Skip to main content Skip to main navigation menu Skip to site footer

Deep Brain Stimulation for Ischemic Stroke Rehabilitation: from Rodents to Human

  • Ruxu Geng
  • Yuhe Wang
  • Renzhi Wang
  • Xinjie Bao

Abstract

Ischemic stroke survivors often suffer from severe disability and impaired quality of life, and the current treatments are inadequate. Deep brain stimulation (DBS) is a promising strategy to enhance recovery and alleviate symptoms, as it can modulate the electrical activity of neural circuits and facilitate neuroprotection and regeneration. In this review, we conducted a comprehensive literature search and summarized the chronic sequelae and mechanisms of ischemic stroke. Then we discuss the common targets and outcomes of DBS in preclinical and clinical studies, as well as the challenges and opportunities of DBS for ischemic stroke treatment.

Section

References

  1. A, M., B, H., M, B., J, S., D, B., K, D., J, O.-F., Pr, E., & Sh, A. (2021). Deep brain stimulation for post-thalamic stroke complex movement disorders. Neurological Sciences : Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 42(1). https://doi.org/10.1007/s10072-020-04572-6
  2. Abdulbaki, A., Jijakli, A., & Krauss, J. K. (2023). Deep brain stimulation for hemidystonia: A meta-analysis with individual patient data. Parkinsonism & Related Disorders, 108, 105317. https://doi.org/10.1016/j.parkreldis.2023.105317
  3. Akyuz, G., & Kuru, P. (2016). Systematic Review of Central Post Stroke Pain: What Is Happening in the Central Nervous System? American Journal of Physical Medicine & Rehabilitation, 95(8), 618. https://doi.org/10.1097/PHM.0000000000000542
  4. Alawieh, A., Zhao, J., & Feng, W. (2018). Factors affecting post-stroke motor recovery: Implications on neurotherapy after brain injury. Behavioural Brain Research, 340, 94–101. https://doi.org/10.1016/j.bbr.2016.08.029
  5. Albers, G. W., Marks, M. P., Kemp, S., Christensen, S., Tsai, J. P., Ortega-Gutierrez, S., McTaggart, R. A., Torbey, M. T., Kim-Tenser, M., Leslie-Mazwi, T., Sarraj, A., Kasner, S. E., Ansari, S. A., Yeatts, S. D., Hamilton, S., Mlynash, M., Heit, J. J., Zaharchuk, G., Kim, S., … Lansberg, M. G. (2018). Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. New England Journal of Medicine, 378(8), 708–718. https://doi.org/10.1056/NEJMoa1713973
  6. Ananda, R., Roslan, M. H. B., Wong, L. L., Botross, N. P., Ngim, C. F., & Mariapun, J. (2023). Efficacy and Safety of Vagus Nerve Stimulation in Stroke Rehabilitation: A Systematic Review and Meta-Analysis. Cerebrovascular Diseases (Basel, Switzerland), 52(3), 239–250. https://doi.org/10.1159/000526470
  7. Arber, S., & Costa, R. M. (2022). Networking brainstem and basal ganglia circuits for movement. Nature Reviews Neuroscience, 23(6), Article 6. https://doi.org/10.1038/s41583-022-00581-w
  8. Astrup, J., Siesjö, B. K., & Symon, L. (1981). Thresholds in cerebral ischemia—The ischemic penumbra. Stroke, 12(6), 723–725. https://doi.org/10.1161/01.STR.12.6.723
  9. Baek, H., Sariev, A., Lee, S., Dong, S.-Y., Royer, S., & Kim, H. (2020). Deep Cerebellar Low-Intensity Focused Ultrasound Stimulation Restores Interhemispheric Balance after Ischemic Stroke in Mice. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 28(9), 2073–2079. https://doi.org/10.1109/TNSRE.2020.3002207
  10. Bagatti, D., D’Ammando, A., Franzini, A., & Messina, G. (2019). Deep Brain Stimulation of the Caudal Zona Incerta and Motor Thalamus for Postischemic Dystonic Tremor of the Left Upper Limb: Case Report and Review of the Literature. World Neurosurgery, 125, 191–197. https://doi.org/10.1016/j.wneu.2019.01.183
  11. Baker, K. B., Plow, E. B., Nagel, S., Rosenfeldt, A. B., Gopalakrishnan, R., Clark, C., Wyant, A., Schroedel, M., Ozinga, J., Davidson, S., Hogue, O., Floden, D., Chen, J., Ford, P. J., Sankary, L., Huang, X., Cunningham, D. A., DiFilippo, F. P., Hu, B., … Machado, A. G. (2023). Cerebellar deep brain stimulation for chronic post-stroke motor rehabilitation: A phase I trial. Nature Medicine, 29(9), 2366–2374. https://doi.org/10.1038/s41591-023-02507-0
  12. Baron, J.-C. (2018). Protecting the ischaemic penumbra as an adjunct to thrombectomy for acute stroke. Nature Reviews. Neurology, 14(6), 325–337. https://doi.org/10.1038/s41582-018-0002-2
  13. Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Chang, A. R., Cheng, S., Das, S. R., Delling, F. N., Djousse, L., Elkind, M. S. V., Ferguson, J. F., Fornage, M., Jordan, L. C., Khan, S. S., Kissela, B. M., Knutson, K. L., … American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. (2019). Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation, 139(10), e56–e528. https://doi.org/10.1161/CIR.0000000000000659
  14. Betancur, D. F. A., Tarragó, M. da G. L., Torres, I. L. da S., Fregni, F., & Caumo, W. (2021). Central Post-Stroke Pain: An Integrative Review of Somatotopic Damage, Clinical Symptoms, and Neurophysiological Measures. Frontiers in Neurology, 12, 678198. https://doi.org/10.3389/fneur.2021.678198
  15. Boese, A. C., Le, Q.-S. E., Pham, D., Hamblin, M. H., & Lee, J.-P. (2018). Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Research & Therapy, 9, 154. https://doi.org/10.1186/s13287-018-0913-2
  16. Bohr, A., Schuhmann, M. K., Papp, L., Volkmann, J., & Fluri, F. (2020). Deep Brain Stimulation for Stroke: Continuous Stimulation of the Pedunculopontine Tegmental Nucleus has no Impact on Skilled Walking in Rats After Photothrombotic Stroke. Current Neurovascular Research, 17(5), 636–643. https://doi.org/10.2174/1567202617666201201141046
  17. (Bud) Craig, A. D. (1998). A new version of the thalamic disinhibition hypothesis of central pain. Pain Forum, 7(1), 1–14. https://doi.org/10.1016/S1082-3174(98)70004-2
  18. Campbell, B. C. V., De Silva, D. A., Macleod, M. R., Coutts, S. B., Schwamm, L. H., Davis, S. M., & Donnan, G. A. (2019). Ischaemic stroke. Nature Reviews Disease Primers, 5(1), Article 1. https://doi.org/10.1038/s41572-019-0118-8
  19. Chan, H. H., Cooperrider, J., Chen, Z., Gale, J. T., Baker, K. B., Wathen, C. A., Modic, C. R., Park, H.-J., & Machado, A. G. (2018). Lateral Cerebellar Nucleus Stimulation has Selective Effects on Glutamatergic and GABAergic Perilesional Neurogenesis After Cortical Ischemia in the Rodent Model. Neurosurgery, 83(5), 1057–1067. https://doi.org/10.1093/neuros/nyx473
  20. Cooperrider, J., Furmaga, H., Plow, E., Park, H.-J., Chen, Z., Kidd, G., Baker, K. B., Gale, J. T., & Machado, A. G. (2014). Chronic Deep Cerebellar Stimulation Promotes Long-Term Potentiation, Microstructural Plasticity, and Reorganization of Perilesional Cortical Representation in a Rodent Model. The Journal of Neuroscience, 34(27), 9040–9050. https://doi.org/10.1523/JNEUROSCI.0953-14.2014
  21. Cooperrider, J., Momin, A., Baker, K. B., & Machado, A. G. (2020). Cerebellar Neuromodulation for Stroke. Current Physical Medicine and Rehabilitation Reports, 8(2), Article 2. https://doi.org/10.1007/s40141-019-00253-4
  22. Diniz, J. M., Cury, R. G., Iglesio, R. F., Lepski, G. A., França, C. C., Barbosa, E. R., de Andrade, D. C., Teixeira, M. J., & Duarte, K. P. (2021). Dentate nucleus deep brain stimulation: Technical note of a novel methodology assisted by tractography. Surgical Neurology International, 12, 400. https://doi.org/10.25259/SNI_338_2021
  23. Dum, R. P., & Strick, P. L. (2003). An Unfolded Map of the Cerebellar Dentate Nucleus and its Projections to the Cerebral Cortex. Journal of Neurophysiology, 89(1), 634–639. https://doi.org/10.1152/jn.00626.2002
  24. Duncan, P. W., Goldstein, L. B., Matchar, D., Divine, G. W., & Feussner, J. (1992). Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke, 23(8), 1084–1089. https://doi.org/10.1161/01.str.23.8.1084
  25. Egger, P., Evangelista, G. G., Koch, P. J., Park, C.-H., Levin-Gleba, L., Girard, G., Beanato, E., Lee, J., Choirat, C., Guggisberg, A. G., Kim, Y.-H., & Hummel, F. C. (2021). Disconnectomics of the Rich Club Impacts Motor Recovery After Stroke. Stroke, 52(6), 2115–2124. https://doi.org/10.1161/STROKEAHA.120.031541
  26. Ej, S., C, H., Am, L., Yy, P., & E, M. (2015). Deep brain stimulation for treatment of dystonia secondary to stroke or trauma. Journal of Neurology, Neurosurgery, and Psychiatry, 86(9). https://doi.org/10.1136/jnnp-2014-308943
  27. Elias, G. J. B., Namasivayam, A. A., & Lozano, A. M. (2018). Deep brain stimulation for stroke: Current uses and future directions. Brain Stimulation, 11(1), 3–28. https://doi.org/10.1016/j.brs.2017.10.005
  28. Feng, W., Wang, J., Chhatbar, P. Y., Doughty, C., Landsittel, D., Lioutas, V.-A., Kautz, S., & Schlaug, G. (2015). Corticospinal Tract Lesion Load—A Potential Imaging Biomarker for Stroke Motor Outcomes. Annals of Neurology, 78(6), 860–870. https://doi.org/10.1002/ana.24510
  29. Fluri, F., Malzahn, U., Homola, G. A., Schuhmann, M. K., Kleinschnitz, C., & Volkmann, J. (2017). Stimulation of the mesencephalic locomotor region for gait recovery after stroke. Annals of Neurology, 82(5), 828–840. https://doi.org/10.1002/ana.25086
  30. Fluri, F., Mützel, T., Schuhmann, M. K., Krstić, M., Endres, H., & Volkmann, J. (2017). Development of a head-mounted wireless microstimulator for deep brain stimulation in rats. Journal of Neuroscience Methods, 291, 249–256. https://doi.org/10.1016/j.jneumeth.2017.08.024
  31. Franzini, A., Cordella, R., Rizzi, M., Marras, C. E., Messina, G., Zorzi, G., & Caldiroli, D. (2014). Deep brain stimulation in critical care conditions. Journal of Neural Transmission, 121(4), 391–398. https://doi.org/10.1007/s00702-013-1122-x
  32. Ganapa, S. V., Ramani, M. D., Ebunlomo, O. O., Rahman, R. K., Herschman, Y., & Mammis, A. (2019). Treatment of Persistent Hemiballism with Deep Brain Stimulation of the Globus Pallidus Internus: Case Report and Literature Review. World Neurosurgery, 132, 368–370. https://doi.org/10.1016/j.wneu.2019.08.247
  33. Gonzalez, V., Le Bars, E., Cif, L., van Dokkum, L. E. H., Laffont, I., Bonafé, A., Menjot de Champfleur, N., Zanca, M., & Coubes, P. (2015). The reorganization of motor network in hemidystonia from the perspective of deep brain stimulation. Brain Imaging and Behavior, 9(2), 223–235. https://doi.org/10.1007/s11682-014-9300-5
  34. Grabska, N., Rudzińska, M., Dec-Ćwiek, M., Tutaj, M., Pietraszko, W., Michalski, M., & Szczudlik, A. (2014). Deep brain stimulation in the treatment of Holmes tremor—A long-term case observation. Neurologia I Neurochirurgia Polska, 48(4), 292–295. https://doi.org/10.1016/j.pjnns.2014.06.002
  35. Griauzde, J., Ravindra, V. M., Chaudhary, N., Gemmete, J. J., & Pandey, A. S. (2019). Neuroprotection for ischemic stroke in the endovascular era: A brief report on the future of intra-arterial therapy. Journal of Clinical Neuroscience, 69, 289–291. https://doi.org/10.1016/j.jocn.2019.08.001
  36. Guo, J., Wang, J., Sun, W., & Liu, X. (2022). The advances of post-stroke depression: 2021 update. Journal of Neurology, 269(3), 1236–1249. https://doi.org/10.1007/s00415-021-10597-4
  37. Hamani, C., Schwalb, J. M., Rezai, A. R., Dostrovsky, J. O., Davis, K. D., & Lozano, A. M. (2006). Deep brain stimulation for chronic neuropathic pain: Long-term outcome and the incidence of insertional effect. Pain, 125(1), 188–196. https://doi.org/10.1016/j.pain.2006.05.019
  38. HEAD, H., & HOLMES, G. (1911). SENSORY DISTURBANCES FROM CEREBRAL LESIONS1. Brain, 34(2–3), 102–254. https://doi.org/10.1093/brain/34.2-3.102
  39. Hoshi, E., Tremblay, L., Féger, J., Carras, P. L., & Strick, P. L. (2005). The cerebellum communicates with the basal ganglia. Nature Neuroscience, 8(11), 1491–1493. https://doi.org/10.1038/nn1544
  40. Hunsche, S., Sauner, D., Runge, M. J. R., Lenartz, D., El Majdoub, F., Treuer, H., Sturm, V., & Maarouf, M. (2013). Tractography-Guided Stimulation of Somatosensory Fibers for Thalamic Pain Relief. Stereotactic and Functional Neurosurgery, 91(5), 328–334. https://doi.org/10.1159/000350024
  41. Jiang, S., Geng, R., Wang, R., Li, X., & Bao, X. (2023). The potential of hydrogels as a niche for promoting neurogenesis and regulating neuroinflammation in ischemic stroke. Materials & Design, 229, 111916. https://doi.org/10.1016/j.matdes.2023.111916
  42. Juruena, M. F., Bocharova, M., Agustini, B., & Young, A. H. (2018). Atypical depression and non-atypical depression: Is HPA axis function a biomarker? A systematic review. Journal of Affective Disorders, 233, 45–67. https://doi.org/10.1016/j.jad.2017.09.052
  43. K, A., Y, H., Y, O., M, Y., T, M., Y, Y., T, Y., S, H., & Y, I. (2018). Effects of bilateral pallidal deep brain stimulation on chorea after pulmonary thromboendarterectomy with deep hypothermia and circulatory arrest: A case report. Acta Neurochirurgica, 160(2). https://doi.org/10.1007/s00701-017-3433-4
  44. Kilbane, C., Ramirez-Zamora, A., Ryapolova-Webb, E., Qasim, S., Glass, G. A., Starr, P. A., & Ostrem, J. L. (2015). Pallidal stimulation for Holmes tremor: Clinical outcomes and single-unit recordings in 4 cases. Journal of Neurosurgery, 122(6), 1306–1314. https://doi.org/10.3171/2015.2.JNS141098
  45. King, M., Kelly, L. P., Wallack, E. M., Hasan, S. M. M., Kirkland, M. C., Curtis, M. E., Chatterjee, T., McCarthy, J., & Ploughman, M. (2019). Serum levels of insulin-like growth factor-1 and brain-derived neurotrophic factor as potential recovery biomarkers in stroke. Neurological Research, 41(4), 354–363. https://doi.org/10.1080/01616412.2018.1564451
  46. Klit, H., Finnerup, N. B., & Jensen, T. S. (2009). Central post-stroke pain: Clinical characteristics, pathophysiology, and management. The Lancet. Neurology, 8(9), 857–868. https://doi.org/10.1016/S1474-4422(09)70176-0
  47. Kobayashi, K., Katayama, Y., Oshima, H., Watanabe, M., Sumi, K., Obuchi, T., Fukaya, C., & Yamamoto, T. (2014). Multitarget, dual-electrode deep brain stimulation of the thalamus and subthalamic area for treatment of Holmes’ tremor. Journal of Neurosurgery, 120(5), 1025–1032. https://doi.org/10.3171/2014.1.JNS12392
  48. Krämer, S. D., Schuhmann, M. K., Schadt, F., Israel, I., Samnick, S., Volkmann, J., & Fluri, F. (2022). Changes of cerebral network activity after invasive stimulation of the mesencephalic locomotor region in a rat stroke model. Experimental Neurology, 347, 113884. https://doi.org/10.1016/j.expneurol.2021.113884
  49. Krämer, S. D., Schuhmann, M. K., Volkmann, J., & Fluri, F. (2022). Deep Brain Stimulation in the Subthalamic Nucleus Can Improve Skilled Forelimb Movements and Retune Dynamics of Striatal Networks in a Rat Stroke Model. International Journal of Molecular Sciences, 23(24). Scopus. https://doi.org/10.3390/ijms232415862
  50. Krause, T., Brunecker, P., Pittl, S., Taskin, B., Laubisch, D., Winter, B., Lentza, M. E., Malzahn, U., Villringer, K., Villringer, A., & Jungehulsing, G. J. (2012). Thalamic sensory strokes with and without pain: Differences in lesion patterns in the ventral posterior thalamus. Journal of Neurology, Neurosurgery & Psychiatry, 83(8), 776–784. https://doi.org/10.1136/jnnp-2011-301936
  51. Lawrence, E. S., Coshall, C., Dundas, R., Stewart, J., Rudd, A. G., Howard, R., & Wolfe, C. D. (2001). Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke, 32(6), 1279–1284. https://doi.org/10.1161/01.str.32.6.1279
  52. Liu, J., Li, J., Yang, Y., Wang, X., Zhang, Z., & Zhang, L. (2014). Neuronal apoptosis in cerebral ischemia/reperfusion area following electrical stimulation of fastigial nucleus. Neural Regeneration Research, 9(7), 727–734. https://doi.org/10.4103/1673-5374.131577
  53. Machado, A., & Baker, K. B. (2012). Upside down crossed cerebellar diaschisis: Proposing chronic stimulation of the dentatothalamocortical pathway for post-stroke motor recovery. Frontiers in Integrative Neuroscience, 6, 20. https://doi.org/10.3389/fnint.2012.00020
  54. Machado, A. G., Baker, K. B., Schuster, D., Butler, R. S., & Rezai, A. (2009). Chronic electrical stimulation of the contralesional lateral cerebellar nucleus enhances recovery of motor function after cerebral ischemia in rats. Brain Research, 1280, 107–116. https://doi.org/10.1016/j.brainres.2009.05.007
  55. Machado, A. G., Cooperrider, J., Furmaga, H. T., Baker, K. B., Park, H.-J., Chen, Z., & Gale, J. T. (2013). Chronic 30-Hz deep cerebellar stimulation coupled with training enhances post-ischemia motor recovery and peri-infarct synaptophysin expression in rodents. Neurosurgery, 73(2), 344–353; discussion 353. https://doi.org/10.1227/01.neu.0000430766.80102.ac
  56. Mergenthaler, P., Dirnagl, U., & Kunz, A. (2022). Ischemic Stroke: Basic Pathophysiology and Clinical Implication. In D. W. Pfaff, N. D. Volkow, & J. L. Rubenstein (Eds.), Neuroscience in the 21st Century: From Basic to Clinical (pp. 3807–3827). Springer International Publishing. https://doi.org/10.1007/978-3-030-88832-9_97
  57. Morimoto, T., Yasuhara, T., Kameda, M., Baba, T., Kuramoto, S., Kondo, A., Takahashi, K., Tajiri, N., Wang, F., Meng, J., Ji, Y. W., Kadota, T., Maruo, T., Kinugasa, K., Miyoshi, Y., Shingo, T., Borlongan, C. V., & Date, I. (2011). Striatal stimulation nurtures endogenous neurogenesis and angiogenesis in chronic-phase ischemic stroke rats. Cell Transplantation, 20(7), 1049–1064. https://doi.org/10.3727/096368910X544915
  58. Morishita, T., Foote, K. D., Archer, D. B., Coombes, S. A., Vaillancourt, D. E., Hassan, A., Haq, I. U., Wolf, J., & Okun, M. S. (2015). Smile without euphoria induced by deep brain stimulation: A case report. Neurocase, 21(6), 674–678. https://doi.org/10.1080/13554794.2014.973883
  59. Murphy, S. JX., & Werring, D. J. (2020). Stroke: Causes and clinical features. Medicine (Abingdon, England : UK Ed.), 48(9), 561–566. https://doi.org/10.1016/j.mpmed.2020.06.002
  60. Murphy, T. H., & Corbett, D. (2009). Plasticity during stroke recovery: From synapse to behaviour. Nature Reviews. Neuroscience, 10(12), 861–872. https://doi.org/10.1038/nrn2735
  61. Nakawah, M. O., & Lai, E. C. (2016). Post-stroke dyskinesias. Neuropsychiatric Disease and Treatment, 12, 2885–2893. https://doi.org/10.2147/NDT.S118347
  62. Ng, Y. S., Stein, J., Ning, M., & Black-Schaffer, R. M. (2007). Comparison of clinical characteristics and functional outcomes of ischemic stroke in different vascular territories. Stroke, 38(8), 2309–2314. https://doi.org/10.1161/STROKEAHA.106.475483
  63. Nicholson, C. L., Coubes, P., & Poulen, G. (2020). Dentate nucleus as target for deep brain stimulation in dystono-dyskinetic syndromes. Neuro-Chirurgie, 66(4), 258–265. https://doi.org/10.1016/j.neuchi.2020.04.132
  64. Nowacki, A., Zhang, D., Barlatey, S., Ai-Schläppi, J., Rosner, J., Arnold, M., & Pollo, C. (2022). Deep Brain Stimulation of the Central Lateral and Ventral Posterior Thalamus for Central Poststroke Pain Syndrome: Preliminary Experience. Neuromodulation: Technology at the Neural Interface. https://doi.org/10.1016/j.neurom.2022.09.005
  65. Nsengiyumva, N., Barakat, A., Macerollo, A., Pullicino, R., Bleakley, A., Bonello, M., Ellis, R. J. B., & Alusi, S. H. (2021). Thalamic versus midbrain tremor; two distinct types of Holmes’ Tremor: A review of 17 cases. Journal of Neurology, 268(11), 4152–4162. https://doi.org/10.1007/s00415-021-10491-z
  66. Obeso, J. A., Rodríguez-Oroz, M. C., Benitez-Temino, B., Blesa, F. J., Guridi, J., Marin, C., & Rodriguez, M. (2008). Functional organization of the basal ganglia: Therapeutic implications for Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 23 Suppl 3, S548-559. https://doi.org/10.1002/mds.22062
  67. Onder, H., Kocer, B., Turan, A., & Comoglu, S. (2023). Illustration of the Long-Term Efficacy of Deep Brain Stimulation of the Thalamic Ventral Intermediate Nucleus in a Patient with Holmes Tremor Secondary to Stroke. Movement Disorders Clinical Practice, 10(7), Article 7. https://doi.org/10.1002/mdc3.13741
  68. O’Shea, S. A., Elkind, M., Pullman, S. L., & Ford, B. (2020). Holmes Tremor due to Artery of Percheron Infarct: Clinical Case and Treatment Using Deep Brain Stimulation of the Vim and ZI Targets. Tremor and Other Hyperkinetic Movements, 10. https://doi.org/10.7916/tohm.v0.732
  69. Paciaroni, M., & Bogousslavsky, J. (1998). Pure Sensory Syndromes in Thalamic Stroke. European Neurology, 39(4), 211–217. https://doi.org/10.1159/000007936
  70. Pang, X.-M., Liu, J.-L., Li, J.-P., Huang, L.-G., Zhang, L., Xiang, H.-Y., Feng, L.-B., Chen, C.-Y., Li, S.-H., & Su, S.-Y. (2015). Fastigial nucleus stimulation regulates neuroprotection via induction of a novel microRNA, rno-miR-676-1, in middle cerebral artery occlusion rats. Journal of Neurochemistry, 133(6), 926–934. https://doi.org/10.1111/jnc.13094
  71. Papuć, E., Obszańska, K., Trojanowski, T., Szczepańska-Szerej, H., Rejdak, K., & Stelmasiak, Z. (2013). Reduction of thalamic tremor with deep brain stimulation performed for post stroke chronic central pain. Annals of Agricultural and Environmental Medicine: AAEM, Spec no. 1, 45–47.
  72. Park, H.-J., Furmaga, H., Cooperrider, J., Gale, J. T., Baker, K. B., & Machado, A. G. (2015). Modulation of cortical motor evoked potential after stroke during electrical stimulation of the lateral cerebellar nucleus. Brain Stimulation, 8(6), 1043–1048. https://doi.org/10.1016/j.brs.2015.06.020
  73. Phipps, M. S., & Cronin, C. A. (2020). Management of acute ischemic stroke. BMJ (Clinical Research Ed.), 368, l6983. https://doi.org/10.1136/bmj.l6983
  74. Pj, S., A, P., & Cr, H. (2015). A prospective, randomized, blinded assessment of multitarget thalamic and pallidal deep brain stimulation in a case of hemidystonia. Clinical Neurology and Neurosurgery, 138. https://doi.org/10.1016/j.clineuro.2015.07.012
  75. Plecash, A. R., Chebini, A., Ip, A., Lai, J. J., Mattar, A. A., Randhawa, J., & Field, T. S. (2019). Updates in the Treatment of Post-Stroke Pain. Current Neurology and Neuroscience Reports, 19(11), 86. https://doi.org/10.1007/s11910-019-1003-2
  76. Powers William J., Rabinstein Alejandro A., Ackerson Teri, Adeoye Opeolu M., Bambakidis Nicholas C., Becker Kyra, Biller José, Brown Michael, Demaerschalk Bart M., Hoh Brian, Jauch Edward C., Kidwell Chelsea S., Leslie-Mazwi Thabele M., Ovbiagele Bruce, Scott Phillip A., Sheth Kevin N., Southerland Andrew M., Summers Deborah V., Tirschwell David L., & null null. (2019). Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, 50(12), e344–e418. https://doi.org/10.1161/STR.0000000000000211
  77. Rezaei Haddad, A., Ughratdar, I., & Ashkan, K. (2015). A single thalamic target for deep brain stimulation to treat hemi-body pain syndrome. Acta Neurochirurgica, 157(9), 1519–1523. https://doi.org/10.1007/s00701-015-2504-7
  78. Sathyanesan, A., Zhou, J., Scafidi, J., Heck, D. H., Sillitoe, R. V., & Gallo, V. (2019). Emerging connections between cerebellar development, behaviour and complex brain disorders. Nature Reviews. Neuroscience, 20(5), 298–313. https://doi.org/10.1038/s41583-019-0152-2
  79. Savoiardo, M. (1986). The vascular territories of the carotid and vertebrobasilar systems. Diagrams based on CT studies of infarcts. Italian Journal of Neurological Sciences, 7(4), 405–409. https://doi.org/10.1007/BF02283018
  80. Schuhmann, M. K., Papp, L., Stoll, G., Blum, R., Volkmann, J., & Fluri, F. (2021). Mesencephalic Electrical Stimulation Reduces Neuroinflammation after Photothrombotic Stroke in Rats by Targeting the Cholinergic Anti-Inflammatory Pathway. International Journal of Molecular Sciences, 22(3), 1254. https://doi.org/10.3390/ijms22031254
  81. Schuhmann, M. K., Stoll, G., Bohr, A., Volkmann, J., & Fluri, F. (2019). Electrical Stimulation of the Mesencephalic Locomotor Region Attenuates Neuronal Loss and Cytokine Expression in the Perifocal Region of Photothrombotic Stroke in Rats. International Journal of Molecular Sciences, 20(9), 2341. https://doi.org/10.3390/ijms20092341
  82. Shik, M. L., Severin, F. V., & Orlovskiĭ, G. N. (1966). [Control of walking and running by means of electric stimulation of the midbrain]. Biofizika, 11(4), 659–666.
  83. Siegel, J. S., Ramsey, L. E., Snyder, A. Z., Metcalf, N. V., Chacko, R. V., Weinberger, K., Baldassarre, A., Hacker, C. D., Shulman, G. L., & Corbetta, M. (2016). Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proceedings of the National Academy of Sciences of the United States of America, 113(30), E4367–E4376. https://doi.org/10.1073/pnas.1521083113
  84. Tacyildiz, A. E., Bilgin, B., Gungor, A., Ucer, M., Karadag, A., & Tanriover, N. (2021). Dentate Nucleus: Connectivity-Based Anatomic Parcellation Based on Superior Cerebellar Peduncle Projections. World Neurosurgery, 152, e408–e428. https://doi.org/10.1016/j.wneu.2021.05.102
  85. Tambirajoo, K., Furlanetti, L., Samuel, M., & Ashkan, K. (2020). Subthalamic Nucleus Deep Brain Stimulation in Post-Infarct Dystonia. Stereotactic and Functional Neurosurgery, 98(6), 386–398. https://doi.org/10.1159/000509317
  86. Ten Brinke, T. R., Arnts, H., Schuurman, R., & van den Munckhof, P. (2020). Directional sensory thalamus deep brain stimulation in poststroke refractory pain. BMJ Case Reports, 13(8), e233254. https://doi.org/10.1136/bcr-2019-233254
  87. Troche, M. S., Brandimore, A. E., Foote, K. D., & Okun, M. S. (2013). Swallowing and deep brain stimulation in Parkinson’s disease: A systematic review. Parkinsonism & Related Disorders, 19(9), 783–788. https://doi.org/10.1016/j.parkreldis.2013.05.001
  88. Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Alonso, A., Beaton, A. Z., Bittencourt, M. S., Boehme, A. K., Buxton, A. E., Carson, A. P., Commodore-Mensah, Y., Elkind, M. S. V., Evenson, K. R., Eze-Nliam, C., Ferguson, J. F., Generoso, G., Ho, J. E., Kalani, R., Khan, S. S., Kissela, B. M., … Martin, S. S. (2022). Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation, 145(8), e153–e639. https://doi.org/10.1161/CIR.0000000000001052
  89. Wang, J., Dong, W., Zhang, W., Zheng, J., & Wang, X. (2014). Electrical Stimulation of Cerebellar Fastigial Nucleus: Mechanism of Neuroprotection and Prospects for Clinical Application against Cerebral Ischemia. CNS Neuroscience & Therapeutics, 20(8), 710–716. https://doi.org/10.1111/cns.12288
  90. Wathen, C. A., Frizon, L. A., Maiti, T. K., Baker, K. B., & Machado, A. G. (2018). Deep brain stimulation of the cerebellum for poststroke motor rehabilitation: From laboratory to clinical trial. Neurosurgical Focus, 45(2), E13. https://doi.org/10.3171/2018.5.FOCUS18164
  91. Witt, J., Starr, P. A., & Ostrem, J. L. (2013). Use of Pallidal Deep Brain Stimulation in Postinfarct Hemidystonia. Stereotactic and Functional Neurosurgery, 91(4), 243–247. https://doi.org/10.1159/000345262
  92. Wu, Z., Sun, F., Li, Z., Liu, M., Tian, X., Guo, D., Wei, P., Shan, Y., Liu, T., Guo, M., Zhu, Z., Zheng, W., Wang, Y., Zhao, G., & Wang, W. (2020). Electrical stimulation of the lateral cerebellar nucleus promotes neurogenesis in rats after motor cortical ischemia. Scientific Reports, 10(1), 16563. https://doi.org/10.1038/s41598-020-73332-5
  93. Zhang, S., Zhang, X., Zhong, H., Li, X., Wu, Y., Ju, J., Liu, B., Zhang, Z., Yan, H., Wang, Y., Song, K., & Hou, S.-T. (2022). Hypothermia evoked by stimulation of medial preoptic nucleus protects the brain in a mouse model of ischaemia. Nature Communications, 13(1), 6890. https://doi.org/10.1038/s41467-022-34735-2
  94. Zhang, X., & Bi, X. (2020). Post-Stroke Cognitive Impairment: A Review Focusing on Molecular Biomarkers. Journal of Molecular Neuroscience, 70(8), 1244–1254. https://doi.org/10.1007/s12031-020-01533-8

How to Cite

Geng, Ruxu, et al. “Deep Brain Stimulation for Ischemic Stroke Rehabilitation: From Rodents to Human”. Human Brain, vol. 2, no. 3, Jan. 2024, doi:10.37819/hb.3.1779.

HTML
92

Total
49

Share

Downloads

Article Details

DOI: https://doi.org/10.37819/hb.3.1779

Published: 2024-01-10

Most Read This Month

License

Copyright (c) 2023 Ruxu Geng, Yuhe Wang, Renzhi Wang, Xinjie Bao

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.