Skip to main content Skip to main navigation menu Skip to site footer

Application of proteomics in brain's aging research

  • Yujia Tan
  • Fengling Luo
  • Yongchang Wei
  • Pan Liu

Abstract

Proteomics is one of the commonly used techniques to explore the protein composition or protein modification status in various healthy or diseased brain tissues in the past decades. Aging is an extremely complex biological process including physiological function decline with age increasing. To have a better understanding of protein changes along with aging, proteomics has been applied in aging-associated research trying to uncover protein changes or post-translational modification (PTM) occurs in aging with the advantage of screening proteins on a large scale. In this review, we summarized protein expression differences detected by proteomics in human or animal brains at different age stages. Protein differences among species or brain regions are obvious, which reminds us to carefully consider these factors in brain aging research. Important protein changes have been found in multiple brain regions in the aging process and these differentially expressed proteins are mainly involved in cellular components, activities of metabolism, mitochondria changes, oxidative modification and some specific signaling pathways.

Section

References

  1. Adler, P., Chiang, C. K., Mayne, J., Ning, Z., Zhang, X., Xu, B., Cheng, H. M., & Figeys, D. (2020). Aging Disrupts the Circadian Patterns of Protein Expression in the Murine Hippocampus. Frontiers in aging neuroscience, 11, 368. https://doi.org/10.3389/fnagi.2019.00368
  2. Adlimoghaddam, A., Benson, T., & Albensi, B. C. (2022). Mitochondrial Transfusion Improves Mitochondrial Function Through Up-regulation of Mitochondrial Complex II Protein Subunit SDHB in the Hippocampus of Aged Mice. Molecular neurobiology, 59(10), 6009–6017. https://doi.org/10.1007/s12035-022-02937-w
  3. Arrázola, M. S., Lira, M., Véliz-Valverde, F., Quiroz, G., Iqbal, S., Eaton, S. L., Lamont, D. J., Huerta, H., Ureta, G., Bernales, S., Cárdenas, J. C., Cerpa, W., Wishart, T. M., & Court, F. A. (2023). Necroptosis inhibition counteracts neurodegeneration, memory decline, and key hallmarks of aging, promoting brain rejuvenation. Aging cell, 22(5), e13814. https://doi.org/10.1111/acel.13814
  4. Azam, S., Haque, M. E., Balakrishnan, R., Kim, I. S., & Choi, D. K. (2021). The Ageing Brain: Molecular and Cellular Basis of Neurodegeneration. Frontiers in cell and developmental biology, 9, 683459. https://doi.org/10.3389/fcell.2021.683459
  5. Bai, B., Vanderwall, D., Li, Y., Wang, X., Poudel, S., Wang, H., Dey, K. K., Chen, P. C., Yang, K., & Peng, J. (2021). Proteomic landscape of Alzheimer's Disease: novel insights into pathogenesis and biomarker discovery. Molecular neurodegeneration, 16(1), 55. https://doi.org/10.1186/s13024-021-00474-z
  6. Bai, B., Wang, X., Li, Y., Chen, P. C., Yu, K., Dey, K. K., Yarbro, J. M., Han, X., Lutz, B. M., Rao, S., Jiao, Y., Sifford, J. M., Han, J., Wang, M., Tan, H., Shaw, T. I., Cho, J. H., Zhou, S., Wang, H., Niu, M., … Peng, J. (2020). Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer's Disease Progression. Neuron, 105(6), 975–991.e7. https://doi.org/10.1016/j.neuron.2019.12.015
  7. Birkisdóttir, M. B., Van't Sant, L. J., Brandt, R. M. C., Barnhoorn, S., Hoeijmakers, J. H. J., Vermeij, W. P., & Jaarsma, D. (2023). Purkinje-cell-specific DNA repair-deficient mice reveal that dietary restriction protects neurons by cell-intrinsic preservation of genomic health. Frontiers in aging neuroscience, 14, 1095801. https://doi.org/10.3389/fnagi.2022.1095801
  8. Burbaud, P., Courtin, E., Ribot, B., & Guehl, D. (2022). Basal ganglia: From the bench to the bed. European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society, 36, 99–106. https://doi.org/10.1016/j.ejpn.2021.12.002
  9. Burke, S. N., & Barnes, C. A. (2006). Neural plasticity in the ageing brain. Nature reviews. Neuroscience, 7(1), 30–40. https://doi.org/10.1038/nrn1809
  10. Carlyle, B. C., Kitchen, R. R., Kanyo, J. E., Voss, E. Z., Pletikos, M., Sousa, A. M. M., Lam, T. T., Gerstein, M. B., Sestan, N., & Nairn, A. C. (2017). A multiregional proteomic survey of the postnatal human brain. Nature neuroscience, 20(12), 1787–1795. https://doi.org/10.1038/s41593-017-0011-2
  11. Chandra, P. K., Cikic, S., Rutkai, I., Guidry, J. J., Katakam, P. V. G., Mostany, R., & Busija, D. W. (2022). Effects of aging on protein expression in mice brain microvessels: ROS scavengers, mRNA/protein stability, glycolytic enzymes, mitochondrial complexes, and basement membrane components. GeroScience, 44(1), 371–388. https://doi.org/10.1007/s11357-021-00468-1
  12. Chen, Y. C., Chang, Y. W., & Huang, Y. S. (2019). Dysregulated Translation in Neurodevelopmental Disorders: An Overview of Autism-Risk Genes Involved in Translation. Developmental neurobiology, 79(1), 60–74. https://doi.org/10.1002/dneu.22653
  13. Chen, Y., Wang, X., Xu, B. (2022). Advances in human brain proteomics analysis of neurodegenerative diseases. Human Brain, 1(1), 21–45 https://doi.org/10.37819/hb.001.001.0197
  14. Creecy, A., Brown, K. L., Rose, K. L., Voziyan, P., & Nyman, J. S. (2021). Post-translational modifications in collagen type I of bone in a mouse model of aging. Bone, 143, 115763. https://doi.org/10.1016/j.bone.2020.115763
  15. Dai, S. K., Liu, P. P., Li, X., Jiao, L. F., Teng, Z. Q., & Liu, C. M. (2022). Dynamic profiling and functional interpretation of histone lysine crotonylation and lactylation during neural development. Development (Cambridge, England), 149(14), dev200049. https://doi.org/10.1242/dev.200049
  16. Dan, X., Yang, B., McDevitt, R. A., Gray, S., Chu, X., Claybourne, Q., Figueroa, D. M., Zhang, Y., Croteau, D. L., & Bohr, V. A. (2023). Loss of smelling is an early marker of aging and is associated with inflammation and DNA damage in C57BL/6J mice. Aging cell, 22(4), e13793. https://doi.org/10.1111/acel.13793
  17. Das, S., Li, Z., Wachter, A., Alla, S., Noori, A., Abdourahman, A., Tamm, J. A., Woodbury, M. E., Talanian, R. V., Biber, K., Karran, E. H., Hyman, B. T., & Serrano-Pozo, A. (2023). Distinct transcriptomic responses to Aβ plaques, neurofibrillary tangles, and APOE in Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's Association, 10.1002/alz.13387. Advance online publication. https://doi.org/10.1002/alz.13387
  18. De Benedictis, A., Rossi-Espagnet, M. C., de Palma, L., Carai, A., & Marras, C. E. (2022). Networking of the Human Cerebellum: From Anatomo-Functional Development to Neurosurgical Implications. Frontiers in neurology, 13, 806298. https://doi.org/10.3389/fneur.2022.806298
  19. de Graaf, E. L., Vermeij, W. P., de Waard, M. C., Rijksen, Y., van der Pluijm, I., Hoogenraad, C. C., Hoeijmakers, J. H., Altelaar, A. F., & Heck, A. J. (2013). Spatio-temporal analysis of molecular determinants of neuronal degeneration in the aging mouse cerebellum. Molecular & cellular proteomics : MCP, 12(5), 1350–1362. https://doi.org/10.1074/mcp.M112.024950
  20. de la Fuente, A. G., Queiroz, R. M. L., Ghosh, T., McMurran, C. E., Cubillos, J. F., Bergles, D. E., Fitzgerald, D. C., Jones, C. A., Lilley, K. S., Glover, C. P., & Franklin, R. J. M. (2020). Changes in the Oligodendrocyte Progenitor Cell Proteome with Ageing. Molecular & cellular proteomics : MCP, 19(8), 1281–1302. https://doi.org/10.1074/mcp.RA120.002102
  21. Domínguez, M., de Oliveira, E., Odena, M. A., Portero, M., Pamplona, R., & Ferrer, I. (2016). Redox proteomic profiling of neuroketal-adducted proteins in human brain: Regional vulnerability at middle age increases in the elderly. Free radical biology & medicine, 95, 1–15. https://doi.org/10.1016/j.freeradbiomed.2016.02.034
  22. Donega, V., Burm, S. M., van Strien, M. E., van Bodegraven, E. J., Paliukhovich, I., Geut, H., van de Berg, W. D. J., Li, K. W., Smit, A. B., Basak, O., & Hol, E. M. (2019). Transcriptome and proteome profiling of neural stem cells from the human subventricular zone in Parkinson's disease. Acta neuropathologica communications, 7(1), 84. https://doi.org/10.1186/s40478-019-0736-0
  23. Drulis-Fajdasz, D., Gizak, A., Wójtowicz, T., Wiśniewski, J. R., & Rakus, D. (2018). Aging-associated changes in hippocampal glycogen metabolism in mice. Evidence for and against astrocyte-to-neuron lactate shuttle. Glia, 66(7), 1481–1495. https://doi.org/10.1002/glia.23319
  24. Drulis-Fajdasz, D., Gostomska-Pampuch, K., Duda, P., Wiśniewski, J. R., & Rakus, D. (2021). Quantitative Proteomics Reveals Significant Differences between Mouse Brain Formations in Expression of Proteins Involved in Neuronal Plasticity during Aging. Cells, 10(8), 2021. https://doi.org/10.3390/cells10082021
  25. Drulis-Fajdasz, D., Gostomska-Pampuch, K., Duda, P., Wiśniewski, J. R., & Rakus, D. (2021). Quantitative Proteomics Reveals Significant Differences between Mouse Brain Formations in Expression of Proteins Involved in Neuronal Plasticity during Aging. Cells, 10(8), 2021. https://doi.org/10.3390/cells10082021
  26. Drulis-Fajdasz, D., Rakus, D., Wiśniewski, J. R., McCubrey, J. A., & Gizak, A. (2018). Systematic analysis of GSK-3 signaling pathways in aging of cerebral tissue. Advances in biological regulation, 69, 35–42. https://doi.org/10.1016/j.jbior.2018.06.001
  27. Duda, P., Wójcicka, O., Wiśniewski, J. R., & Rakus, D. (2018). Global quantitative TPA-based proteomics of mouse brain structures reveals significant alterations in expression of proteins involved in neuronal plasticity during aging. Aging, 10(7), 1682–1697. https://doi.org/10.18632/aging.101501
  28. Ferrari, F., Gorini, A., & Villa, R. F. (2015). Energy metabolism of synaptosomes from different neuronal systems of rat cerebellum during aging: a functional proteomic characterization. Neurochemical research, 40(1), 172–185. https://doi.org/10.1007/s11064-014-1482-0
  29. Furukawa, A., Oikawa, S., Hasegawa-Ishii, S., Chiba, Y., Kawamura, N., Takei, S., Yoshikawa, K., Hosokawa, M., Kawanishi, S., & Shimada, A. (2010). Proteomic analysis of aging brain in SAMP10 mouse: a model of age-related cerebral degeneration. Mechanisms of ageing and development, 131(6), 379–388. https://doi.org/10.1016/j.mad.2010.05.002
  30. Gao, Y., Liu, J., Wang, J., Liu, Y., Zeng, L. H., Ge, W., & Ma, C. (2022). Proteomic analysis of human hippocampal subfields provides new insights into the pathogenesis of Alzheimer's disease and the role of glial cells. Brain pathology (Zurich, Switzerland), 32(4), e13047. https://doi.org/10.1111/bpa.13047
  31. Gant, J. C., Blalock, E. M., Chen, K. C., Kadish, I., Thibault, O., Porter, N. M., & Landfield, P. W. (2018). FK506-Binding Protein 12.6/1b, a Negative Regulator of [Ca2+], Rescues Memory and Restores Genomic Regulation in the Hippocampus of Aging Rats. The Journal of neuroscience : the official journal of the Society for Neuroscience, 38(4), 1030–1041. https://doi.org/10.1523/JNEUROSCI.2234-17.2017
  32. Gómez-Gálvez, Y., Fuller, H. R., Synowsky, S., Shirran, S. L., & Gates, M. A. (2020). Quantitative proteomic profiling of the rat substantia nigra places glial fibrillary acidic protein at the hub of proteins dysregulated during aging: Implications for idiopathic Parkinson's disease. Journal of neuroscience research, 98(7), 1417–1432. https://doi.org/10.1002/jnr.24622
  33. Guo, Z., Shao, C., Zhang, Y., Qiu, W., Li, W., Zhu, W., Yang, Q., Huang, Y., Pan, L., Dong, Y., Sun, H., Xiao, X., Sun, W., Ma, C., & Zhang, L. (2022). A Global Multiregional Proteomic Map of the Human Cerebral Cortex. Genomics, proteomics & bioinformatics, 20(4), 614–632. https://doi.org/10.1016/j.gpb.2021.08.008
  34. Gostomska-Pampuch, K., Drulis-Fajdasz, D., Gizak, A., Wiśniewski, J. R., & Rakus, D. (2021). Absolute Proteome Analysis of Hippocampus, Cortex and Cerebellum in Aged and Young Mice Reveals Changes in Energy Metabolism. International journal of molecular sciences, 22(12), 6188. https://doi.org/10.3390/ijms22126188
  35. Graham, L. C., Naldrett, M. J., Kohama, S. G., Smith, C., Lamont, D. J., McColl, B. W., Gillingwater, T. H., Skehel, P., Urbanski, H. F., & Wishart, T. M. (2019). Regional Molecular Mapping of Primate Synapses during Normal Healthy Aging. Cell reports, 27(4), 1018–1026.e4. https://doi.org/10.1016/j.celrep.2019.03.096
  36. Gray, D. T., Khattab, S., Meltzer, J., McDermott, K., Schwyhart, R., Sinakevitch, I., Härtig, W., & Barnes, C. A. (2023). Retrosplenial cortex microglia and perineuronal net densities are associated with memory impairment in aged rhesus macaques. Cerebral cortex (New York, N.Y. : 1991), 33(8), 4626–4644. https://doi.org/10.1093/cercor/bhac366
  37. Griffioen G. (2023). Calcium Dyshomeostasis Drives Pathophysiology and Neuronal Demise in Age-Related Neurodegenerative Diseases. International journal of molecular sciences, 24(17), 13243. https://doi.org/10.3390/ijms241713243
  38. Hanseeuw, B. J., Jacobs, H. I., Schultz, A. P., Buckley, R. F., Farrell, M. E., Guehl, N. J., Becker, J. A., Properzi, M., Sanchez, J. S., Quiroz, Y. T., Vannini, P., Sepulcre, J., Yang, H. S., Chhatwal, J. P., Gatchel, J., Marshall, G. A., Amariglio, R., Papp, K., Rentz, D. M., Normandin, M., … Johnson, K. A. (2023). Association of pathological and volumetric biomarker changes with cognitive decline in clinically normal adults: Harvard Aging Brain Study. Neurology, 10.1212/WNL.0000000000207962. Advance online publication. https://doi.org/10.1212/WNL.0000000000207962
  39. Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S. G., Croteau, D. L., & Bohr, V. A. (2019). Ageing as a risk factor for neurodegenerative disease. Nature reviews. Neurology, 15(10), 565–581. https://doi.org/10.1038/s41582-019-0244-7
  40. Huang, Z., Chen, B., Liu, X., Li, H., Xie, L., Gao, Y., Duan, R., Li, Z., Zhang, J., Zheng, Y., & Su, W. (2021). Effects of sex and aging on the immune cell landscape as assessed by single-cell transcriptomic analysis. Proceedings of the National Academy of Sciences of the United States of America, 118(33), e2023216118. https://doi.org/10.1073/pnas.2023216118
  41. Huitinga, I., de Goeij, M., & Klioueva, N. (2019). Legal and Ethical Issues in Brain Banking. Neuroscience bulletin, 35(2), 267–269. https://doi.org/10.1007/s12264-018-0305-8
  42. Jasien, J. M., Daimon, C. M., Wang, R., Shapiro, B. K., Martin, B., & Maudsley, S. (2014). The effects of aging on the BTBR mouse model of autism spectrum disorder. Frontiers in aging neuroscience, 6, 225. https://doi.org/10.3389/fnagi.2014.00225
  43. Jayathirtha, M., Jayaweera, T., Whitham, D., Petre, B. A., Neagu, A. N., & Darie, C. C. (2023). Two-Dimensional Polyacrylamide Gel Electrophoresis Coupled with Nanoliquid Chromatography-Tandem Mass Spectrometry-Based Identification of Differentially Expressed Proteins and Tumorigenic Pathways in the MCF7 Breast Cancer Cell Line Transfected for Jumping Translocation Breakpoint Protein Overexpression. International journal of molecular sciences, 24(19), 14714. https://doi.org/10.3390/ijms241914714
  44. Jia, Y., Wang, X., Chen, Y., Qiu, W., Ge, W., & Ma, C. (2021). Proteomic and Transcriptomic Analyses Reveal Pathological Changes in the Entorhinal Cortex Region that Correlate Well with Dysregulation of Ion Transport in Patients with Alzheimer's Disease. Molecular neurobiology, 58(8), 4007–4027. https://doi.org/10.1007/s12035-021-02356-3
  45. Johnson, E. C. B., Carter, E. K., Dammer, E. B., Duong, D. M., Gerasimov, E. S., Liu, Y., Liu, J., Betarbet, R., Ping, L., Yin, L., Serrano, G. E., Beach, T. G., Peng, J., De Jager, P. L., Haroutunian, V., Zhang, B., Gaiteri, C., Bennett, D. A., Gearing, M., Wingo, T. S., … Seyfried, N. T. (2022). Large-scale deep multi-layer analysis of Alzheimer's disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nature neuroscience, 25(2), 213–225. https://doi.org/10.1038/s41593-021-00999-y
  46. Kashem, M. A., Ahmed, S., Sultana, N., Ahmed, E. U., Pickford, R., Rae, C., Šerý, O., McGregor, I. S., & Balcar, V. J. (2016). Metabolomics of Neurotransmitters and Related Metabolites in Post-Mortem Tissue from the Dorsal and Ventral Striatum of Alcoholic Human Brain. Neurochemical research, 41(1-2), 385–397. https://doi.org/10.1007/s11064-016-1830-3
  47. Kisaretova, P., Tsybko, A., Bondar, N., & Reshetnikov, V. (2023). Molecular Abnormalities in BTBR Mice and Their Relevance to Schizophrenia and Autism Spectrum Disorders: An Overview of Transcriptomic and Proteomic Studies. Biomedicines, 11(2), 289. https://doi.org/10.3390/biomedicines11020289
  48. Kluever, V., Russo, B., Mandad, S., Kumar, N. H., Alevra, M., Ori, A., Rizzoli, S. O., Urlaub, H., Schneider, A., & Fornasiero, E. F. (2022). Protein lifetimes in aged brains reveal a proteostatic adaptation linking physiological aging to neurodegeneration. Science advances, 8(20), eabn4437. https://doi.org/10.1126/sciadv.abn4437
  49. Kochunov, P., Rogers, W., Mangin, J. F., & Lancaster, J. (2012). A library of cortical morphology analysis tools to study development, aging and genetics of cerebral cortex. Neuroinformatics, 10(1), 81–96. https://doi.org/10.1007/s12021-011-9127-9
  50. Lathe, R., & St Clair, D. (2023). Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biological reviews of the Cambridge Philosophical Society, 98(4), 1424–1458. https://doi.org/10.1111/brv.12959
  51. Libertini, G., & Ferrara, N. (2016). Aging of perennial cells and organ parts according to the programmed aging paradigm. Age (Dordrecht, Netherlands), 38(2), 35. https://doi.org/10.1007/s11357-016-9895-0
  52. Liu, F., Yin, X., Cong, C., Wang, Y., Ma, C. (2022). Human Brain Banking as a Convergence Platform of Neuroscience and Neuropsychiatric Research. Human Brain, (2022) 1(1). https://doi.org/10.37819/hb.001.001.0204
  53. Liu, P., Yang, Q., Yu, N., Cao, Y., Wang, X., Wang, Z., Qiu, W. Y., & Ma, C. (2021). Phenylalanine Metabolism Is Dysregulated in Human Hippocampus with Alzheimer's Disease Related Pathological Changes. Journal of Alzheimer's disease : JAD, 83(2), 609–622. https://doi.org/10.3233/JAD-210461
  54. López-Otín, C., Pietrocola, F., Roiz-Valle, D., Galluzzi, L., & Kroemer, G. (2023). Meta-hallmarks of aging and cancer. Cell metabolism, 35(1), 12–35. https://doi.org/10.1016/j.cmet.2022.11.001
  55. Lubec, J., Smidak, R., Malikovic, J., Feyissa, D. D., Korz, V., Höger, H., & Lubec, G. (2019). Dentate Gyrus Peroxiredoxin 6 Levels Discriminate Aged Unimpaired From Impaired Rats in a Spatial Memory Task. Frontiers in aging neuroscience, 11, 198. https://doi.org/10.3389/fnagi.2019.00198
  56. Luo, D., Li, J., Liu, H., Wang, J., Xia, Y., Qiu, W., Wang, N., Wang, X., Wang, X., Ma, C., & Ge, W. (2023). Integrative Transcriptomic Analyses of Hippocampal-Entorhinal System Subfields Identify Key Regulators in Alzheimer's Disease. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 10(22), e2300876. https://doi.org/10.1002/advs.202300876
  57. Ma, C., Bao, A. M., Yan, X. X., & Swaab, D. F. (2019). Progress in Human Brain Banking in China. Neuroscience bulletin, 35(2), 179–182. https://doi.org/10.1007/s12264-019-00350-3
  58. Mansour L, S., Di Biase, M. A., Smith, R. E., Zalesky, A., & Seguin, C. (2023). Connectomes for 40,000 UK Biobank participants: A multi-modal, multi-scale brain network resource. NeuroImage, 283, 120407. https://doi.org/10.1016/j.neuroimage.2023.120407
  59. Mao, L., Römer, I., Nebrich, G., Klein, O., Koppelstätter, A., Hin, S. C., Hartl, D., & Zabel, C. (2010). Aging in mouse brain is a cell/tissue-level phenomenon exacerbated by proteasome loss. Journal of proteome research, 9(7), 3551–3560. https://doi.org/10.1021/pr100059j
  60. Mao, L., Zabel, C., Wacker, M. A., Nebrich, G., Sagi, D., Schrade, P., Bachmann, S., Kowald, A., & Klose, J. (2006). Estimation of the mtDNA mutation rate in aging mice by proteome analysis and mathematical modeling. Experimental gerontology, 41(1), 11–24. https://doi.org/10.1016/j.exger.2005.09.012
  61. Martinez-Val, A., Guzmán, U. H., & Olsen, J. V. (2022). Obtaining Complete Human Proteomes. Annual review of genomics and human genetics, 23, 99–121. https://doi.org/10.1146/annurev-genom-112921-024948
  62. McDonald, K. R., Pearson, J. M., & Huettel, S. A. (2020). Dorsolateral and dorsomedial prefrontal cortex track distinct properties of dynamic social behavior. Social cognitive and affective neuroscience, 15(4), 383–393. https://doi.org/10.1093/scan/nsaa053
  63. McGinn, M. J., Colello, R. J., & Sun, D. (2012). Age-related proteomic changes in the subventricular zone and their association with neural stem/progenitor cell proliferation. Journal of neuroscience research, 90(6), 1159–1168. https://doi.org/10.1002/jnr.23012
  64. Mehan, N. D., & Strauss, K. I. (2012). Combined age- and trauma-related proteomic changes in rat neocortex: a basis for brain vulnerability. Neurobiology of aging, 33(9), 1857–1873. https://doi.org/10.1016/j.neurobiolaging.2011.09.029
  65. Mott, N. N., Pinceti, E., Rao, Y. S., Przybycien-Szymanska, M. M., Prins, S. A., Shults, C. L., Yang, X., Glucksman, M. J., Roberts, J. L., & Pak, T. R. (2014). Age-dependent Effects of 17β-estradiol on the dynamics of estrogen receptor β (ERβ) protein-protein interactions in the ventral hippocampus. Molecular & cellular proteomics : MCP, 13(3), 760–779. https://doi.org/10.1074/mcp.M113.031559
  66. Nerattini, M., Jett, S., Andy, C., Carlton, C., Zarate, C., Boneu, C., Battista, M., Pahlajani, S., Loeb-Zeitlin, S., Havryulik, Y., Williams, S., Christos, P., Fink, M., Brinton, R. D., & Mosconi, L. (2023). Systematic review and meta-analysis of the effects of menopause hormone therapy on risk of Alzheimer's disease and dementia. Frontiers in aging neuroscience, 15, 1260427. https://doi.org/10.3389/fnagi.2023.1260427
  67. Orock, A., Logan, S., & Deak, F. (2020). Age-Related Cognitive Impairment: Role of Reduced Synaptobrevin-2 Levels in Deficits of Memory and Synaptic Plasticity. The journals of gerontology. Series A, Biological sciences and medical sciences, 75(9), 1624–1632. https://doi.org/10.1093/gerona/glz013
  68. Ottis, P., Topic, B., Loos, M., Li, K. W., de Souza, A., Schulz, D., Smit, A. B., Huston, J. P., & Korth, C. (2013). Aging-induced proteostatic changes in the rat hippocampus identify ARP3, NEB2 and BRAG2 as a molecular circuitry for cognitive impairment. PloS one, 8(9), e75112. https://doi.org/10.1371/journal.pone.0075112
  69. Pabba, M., Scifo, E., Kapadia, F., Nikolova, Y. S., Ma, T., Mechawar, N., Tseng, G. C., & Sibille, E. (2017). Resilient protein co-expression network in male orbitofrontal cortex layer 2/3 during human aging. Neurobiology of aging, 58, 180–190. https://doi.org/10.1016/j.neurobiolaging.2017.06.023
  70. Park, S. B., Koh, B., Kwon, H. S., Kim, Y. E., Kim, S. S., Cho, S. H., Kim, T. Y., Bae, M. A., Kang, D., Kim, C. H., & Kim, K. Y. (2023). Quantitative and Qualitative Analysis of Neurotransmitter and Neurosteroid Production in Cerebral Organoids during Differentiation. ACS chemical neuroscience, 14(20), 3761–3771. https://doi.org/10.1021/acschemneuro.3c00246
  71. Pawlyk, A. C., Ferber, M., Shah, A., Pack, A. I., & Naidoo, N. (2007). Proteomic analysis of the effects and interactions of sleep deprivation and aging in mouse cerebral cortex. Journal of neurochemistry, 103(6), 2301–2313. https://doi.org/10.1111/j.1471-4159.2007.04949.x
  72. Perluigi, M., Di Domenico, F., Giorgi, A., Schininà, M. E., Coccia, R., Cini, C., Bellia, F., Cambria, M. T., Cornelius, C., Butterfield, D. A., & Calabrese, V. (2010). Redox proteomics in aging rat brain: involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process. Journal of neuroscience research, 88(16), 3498–3507. https://doi.org/10.1002/jnr.22500
  73. Pike, K. E., Cavuoto, M. G., Li, L., Wright, B. J., & Kinsella, G. J. (2022). Subjective Cognitive Decline: Level of Risk for Future Dementia and Mild Cognitive Impairment, a Meta-Analysis of Longitudinal Studies. Neuropsychology review, 32(4), 703–735. https://doi.org/10.1007/s11065-021-09522-3
  74. Poon, H. F., Castegna, A., Farr, S. A., Thongboonkerd, V., Lynn, B. C., Banks, W. A., Morley, J. E., Klein, J. B., & Butterfield, D. A. (2004). Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain. Neuroscience, 126(4), 915–926. https://doi.org/10.1016/j.neuroscience.2004.04.046
  75. Poon, H. F., Shepherd, H. M., Reed, T. T., Calabrese, V., Stella, A. M., Pennisi, G., Cai, J., Pierce, W. M., Klein, J. B., & Butterfield, D. A. (2006). Proteomics analysis provides insight into caloric restriction mediated oxidation and expression of brain proteins associated with age-related impaired cellular processes: Mitochondrial dysfunction, glutamate dysregulation and impaired protein synthesis. Neurobiology of aging, 27(7), 1020–1034. https://doi.org/10.1016/j.neurobiolaging.2005.05.014
  76. Poon, H. F., Vaishnav, R. A., Butterfield, D. A., Getchell, M. L., & Getchell, T. V. (2005). Proteomic identification of differentially expressed proteins in the aging murine olfactory system and transcriptional analysis of the associated genes. Journal of neurochemistry, 94(2), 380–392. https://doi.org/10.1111/j.1471-4159.2005.03215.x
  77. Poon, H. F., Vaishnav, R. A., Getchell, T. V., Getchell, M. L., & Butterfield, D. A. (2006). Quantitative proteomics analysis of differential protein expression and oxidative modification of specific proteins in the brains of old mice. Neurobiology of aging, 27(7), 1010–1019. https://doi.org/10.1016/j.neurobiolaging.2005.05.006
  78. Raffel, S., Klimmeck, D., Falcone, M., Demir, A., Pouya, A., Zeisberger, P., Lutz, C., Tinelli, M., Bischel, O., Bullinger, L., Thiede, C., Flörcken, A., Westermann, J., Ehninger, G., Ho, A. D., Müller-Tidow, C., Gu, Z., Herrmann, C., Krijgsveld, J., Trumpp, A., … Hansson, J. (2020). Quantitative proteomics reveals specific metabolic features of acute myeloid leukemia stem cells. Blood, 136(13), 1507–1519. https://doi.org/10.1182/blood.2019003654
  79. Ratovitski, T., O'Meally, R. N., Jiang, M., Chaerkady, R., Chighladze, E., Stewart, J. C., Wang, X., Arbez, N., Roby, E., Alexandris, A., Duan, W., Vijayvargia, R., Seong, I. S., Lavery, D. J., Cole, R. N., & Ross, C. A. (2017). Post-Translational Modifications (PTMs), Identified on Endogenous Huntingtin, Cluster within Proteolytic Domains between HEAT Repeats. Journal of proteome research, 16(8), 2692–2708. https://doi.org/10.1021/acs.jproteome.6b00991
  80. Rozanova, S., Uszkoreit, J., Schork, K., Serschnitzki, B., Eisenacher, M., Tönges, L., Barkovits-Boeddinghaus, K., & Marcus, K. (2023). Quality Control-A Stepchild in Quantitative Proteomics: A Case Study for the Human CSF Proteome. Biomolecules, 13(3), 491. https://doi.org/10.3390/biom13030491
  81. Saia-Cereda, V. M., Cassoli, J. S., Schmitt, A., Falkai, P., Nascimento, J. M., & Martins-de-Souza, D. (2015). Proteomics of the corpus callosum unravel pivotal players in the dysfunction of cell signaling, structure, and myelination in schizophrenia brains. European archives of psychiatry and clinical neuroscience, 265(7), 601–612. https://doi.org/10.1007/s00406-015-0621-1
  82. Santín-Márquez, R., Ramírez-Cordero, B., Toledo-Pérez, R., Luna-López, A., López-Diazguerrero, N. E., Hernández-Arciga, U., Pérez-Morales, M., Ortíz-Retana, J. J., García-Servín, M., Alcauter, S., Hernández-Godínez, B., Ibañez-Contreras, A., Concha, L., Gómez-González, B., & Königsberg, M. (2021). Sensory and memory processing in old female and male Wistar rat brain, and its relationship with the cortical and hippocampal redox state. GeroScience, 43(4), 1899–1920. https://doi.org/10.1007/s11357-021-00353-x
  83. Schrötter, A., Oberhaus, A., Kolbe, K., Seger, S., Mastalski, T., El Magraoui, F., Hoffmann-Posorske, E., Bohnert, M., Deckert, J., Braun, C., Graw, M., Schmitz, C., Arzberger, T., Loosse, C., Heinsen, H., Meyer, H. E., & Müller, T. (2017). LMD proteomics provides evidence for hippocampus field-specific motor protein abundance changes with relevance to Alzheimer's disease. Biochimica et biophysica acta. Proteins and proteomics, 1865(6), 703–714. https://doi.org/10.1016/j.bbapap.2017.03.013
  84. Seefeldt, I., Nebrich, G., Römer, I., Mao, L., & Klose, J. (2006). Evaluation of 2-DE protein patterns from pre- and postnatal stages of the mouse brain. Proteomics, 6(18), 4932–4939. https://doi.org/10.1002/pmic.200600188
  85. Shepherd, C. E., Alvendia, H., & Halliday, G. M. (2019). Brain Banking for Research into Neurodegenerative Disorders and Ageing. Neuroscience bulletin, 35(2), 283–288. https://doi.org/10.1007/s12264-018-0326-3
  86. Shine J. M. (2019). Neuromodulatory Influences on Integration and Segregation in the Brain. Trends in cognitive sciences, 23(7), 572–583. https://doi.org/10.1016/j.tics.2019.04.002
  87. Short, M. I., Fohner, A. E., Skjellegrind, H. K., Beiser, A., Gonzales, M. M., Satizabal, C. L., Austin, T. R., Longstreth, W. T., Bis, J. C., Lopez, O., Hveem, K., Selbæk, G., Larson, M. G., Yang, Q., Aparicio, H. J., McGrath, E. R., Gerszten, R. E., DeCarli, C. S., Psaty, B. M., Vasan, R. S., … Seshadri, S. (2023). Proteome Network Analysis Identifies Potential Biomarkers for Brain Aging. Journal of Alzheimer's disease : JAD, 10.3233/JAD-230145. Advance online publication. https://doi.org/10.3233/JAD-230145
  88. Shumaker, S. A., Legault, C., Kuller, L., Rapp, S. R., Thal, L., Lane, D. S., Fillit, H., Stefanick, M. L., Hendrix, S. L., Lewis, C. E., Masaki, K., Coker, L. H., & Women's Health Initiative Memory Study (2004). Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women's Health Initiative Memory Study. JAMA, 291(24), 2947–2958. https://doi.org/10.1001/jama.291.24.2947
  89. Simandi, Z., Pajer, K., Karolyi, K., Sieler, T., Jiang, L. L., Kolostyak, Z., Sari, Z., Fekecs, Z., Pap, A., Patsalos, A., Contreras, G. A., Reho, B., Papp, Z., Guo, X., Horvath, A., Kiss, G., Keresztessy, Z., Vámosi, G., Hickman, J., Xu, H., … Nagy, L. (2018). Arginine Methyltransferase PRMT8 Provides Cellular Stress Tolerance in Aging Motoneurons. The Journal of neuroscience : the official journal of the Society for Neuroscience, 38(35), 7683–7700. https://doi.org/10.1523/JNEUROSCI.3389-17.2018
  90. Song, Q., Hou, Y., Zhang, Y., Liu, J., Wang, Y., Fu, J., Zhang, C., Cao, M., Cui, Y., Zhang, X., Wang, X., Zhang, J., Liu, C., Zhang, Y., & Wang, P. (2022). Integrated multi-omics approach revealed cellular senescence landscape. Nucleic acids research, 50(19), 10947–10963. https://doi.org/10.1093/nar/gkac885
  91. Spaak, E., & de Lange, F. P. (2020). Hippocampal and Prefrontal Theta-Band Mechanisms Underpin Implicit Spatial Context Learning. The Journal of neuroscience : the official journal of the Society for Neuroscience, 40(1), 191–202. https://doi.org/10.1523/JNEUROSCI.1660-19.2019
  92. Srivastava, K., & Mishra, R. (2023). Pax6 affects Ras-Raf-ERK1/2 in mouse aging brain. Biogerontology, 24(6), 901–912. https://doi.org/10.1007/s10522-023-10044-z
  93. Stastna, M., Abraham, M. R., & Van Eyk, J. E. (2009). Cardiac stem/progenitor cells, secreted proteins, and proteomics. FEBS letters, 583(11), 1800–1807. https://doi.org/10.1016/j.febslet.2009.03.026
  94. Stauch, K. L., Purnell, P. R., & Fox, H. S. (2014). Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function. Aging, 6(4), 320–334. https://doi.org/10.18632/aging.100657
  95. Stühler, K., Pfeiffer, K., Joppich, C., Stephan, C., Jung, K., Müller, M., Schmidt, O., van Hall, A., Hamacher, M., Urfer, W., Meyer, H. E., & Marcus, K. (2006). Pilot study of the Human Proteome Organisation Brain Proteome Project: applying different 2-DE techniques to monitor proteomic changes during murine brain development. Proteomics, 6(18), 4899–4913. https://doi.org/10.1002/pmic.200600089
  96. Theves, S., Neville, D. A., Fernández, G., & Doeller, C. F. (2021). Learning and Representation of Hierarchical Concepts in Hippocampus and Prefrontal Cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience, 41(36), 7675–7686. https://doi.org/10.1523/JNEUROSCI.0657-21.2021
  97. Toader, C., Dobrin, N., Brehar, F. M., Popa, C., Covache-Busuioc, R. A., Glavan, L. A., Costin, H. P., Bratu, B. G., Corlatescu, A. D., Popa, A. A., & Ciurea, A. V. (2023). From Recognition to Remedy: The Significance of Biomarkers in Neurodegenerative Disease Pathology. International journal of molecular sciences, 24(22), 16119. https://doi.org/10.3390/ijms242216119
  98. Tooley, U. A., Park, A. T., Leonard, J. A., Boroshok, A. L., McDermott, C. L., Tisdall, M. D., Bassett, D. S., & Mackey, A. P. (2022). The Age of Reason: Functional Brain Network Development during Childhood. The Journal of neuroscience : the official journal of the Society for Neuroscience, 42(44), 8237–8251. https://doi.org/10.1523/JNEUROSCI.0511-22.2022
  99. Tsumagari, K., Sato, Y., Aoyagi, H., Okano, H., & Kuromitsu, J. (2023). Proteomic characterization of aging-driven changes in the mouse brain by co-expression network analysis. Scientific reports, 13(1), 18191. https://doi.org/10.1038/s41598-023-45570-w
  100. Tuttle, C. S. L., Waaijer, M. E. C., Slee-Valentijn, M. S., Stijnen, T., Westendorp, R., & Maier, A. B. (2020). Cellular senescence and chronological age in various human tissues: A systematic review and meta-analysis. Aging cell, 19(2), e13083. https://doi.org/10.1111/acel.13083
  101. Tzeng, W. Y., Figarella, K., & Garaschuk, O. (2021). Olfactory impairment in men and mice related to aging and amyloid-induced pathology. Pflugers Archiv : European journal of physiology, 473(5), 805–821. https://doi.org/10.1007/s00424-021-02527-0
  102. Urrutia, P. J., & Bórquez, D. A. (2023). Expanded bioinformatic analysis of Oximouse dataset reveals key putative processes involved in brain aging and cognitive decline. Free radical biology & medicine, 207, 200–211. https://doi.org/10.1016/j.freeradbiomed.2023.07.018
  103. van Hoorn, J., Shablack, H., Lindquist, K. A., & Telzer, E. H. (2019). Incorporating the social context into neurocognitive models of adolescent decision-making: A neuroimaging meta-analysis. Neuroscience and biobehavioral reviews, 101, 129–142. https://doi.org/10.1016/j.neubiorev.2018.12.024
  104. Vinaiphat, A., & Sze, S. K. (2022). Proteomics for comprehensive characterization of extracellular vesicles in neurodegenerative disease. Experimental neurology, 355, 114149. https://doi.org/10.1016/j.expneurol.2022.114149
  105. Wang, J., Clauson, C. L., Robbins, P. D., Niedernhofer, L. J., & Wang, Y. (2012). The oxidative DNA lesions 8,5'-cyclopurines accumulate with aging in a tissue-specific manner. Aging cell, 11(4), 714–716. https://doi.org/10.1111/j.1474-9726.2012.00828.x
  106. Wang, L., Pang, K., Zhou, L., Cebrián-Silla, A., González-Granero, S., Wang, S., Bi, Q., White, M. L., Ho, B., Li, J., Li, T., Perez, Y., Huang, E. J., Winkler, E. A., Paredes, M. F., Kovner, R., Sestan, N., Pollen, A. A., Liu, P., Li, J., … Kriegstein, A. R. (2023). A cross-species proteomic map reveals neoteny of human synapse development. Nature, 622(7981), 112–119. https://doi.org/10.1038/s41586-023-06542-2
  107. Wang, L., Xia, Y., Chen, Y., Dai, R., Qiu, W., Meng, Q., Kuney, L., & Chen, C. (2019). Brain Banks Spur New Frontiers in Neuropsychiatric Research and Strategies for Analysis and Validation. Genomics, proteomics & bioinformatics, 17(4), 402–414. https://doi.org/10.1016/j.gpb.2019.02.002
  108. Wang, Q., Zhao, X., He, S., Liu, Y., An, M., & Ji, J. (2010). Differential proteomics analysis of specific carbonylated proteins in the temporal cortex of aged rats: the deterioration of antioxidant system. Neurochemical research, 35(1), 13–21. https://doi.org/10.1007/s11064-009-0023-8
  109. Wang, X., Wu, J, Wang, N., Zhang, D., Chen, Z., Zhang, H., Zhu, K., Bao, A.,
  110. Zhang, J., Shen,Y., Qian X., Qiu W. (2022). Standardized Operational Protocol for the China Human Brain Bank Consortium. Human Brain, 1(1), 92–106. https://doi.org/10.37819/hb.001.001.0209
  111. Watson, T. C., Obiang, P., Torres-Herraez, A., Watilliaux, A., Coulon, P., Rochefort, C., & Rondi-Reig, L. (2019). Anatomical and physiological foundations of cerebello-hippocampal interaction. eLife, 8, e41896. https://doi.org/10.7554/eLife.41896
  112. Wesseling, H., Chan, M. K., Tsang, T. M., Ernst, A., Peters, F., Guest, P. C., Holmes, E., & Bahn, S. (2013). A combined metabonomic and proteomic approach identifies frontal cortex changes in a chronic phencyclidine rat model in relation to human schizophrenia brain pathology. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 38(12), 2532–2544. https://doi.org/10.1038/npp.2013.160
  113. Xiao, H., Jedrychowski, M. P., Schweppe, D. K., Huttlin, E. L., Yu, Q., Heppner, D. E., Li, J., Long, J., Mills, E. L., Szpyt, J., He, Z., Du, G., Garrity, R., Reddy, A., Vaites, L. P., Paulo, J. A., Zhang, T., Gray, N. S., Gygi, S. P., & Chouchani, E. T. (2020). A Quantitative Tissue-Specific Landscape of Protein Redox Regulation during Aging. Cell, 180(5), 968–983.e24. https://doi.org/10.1016/j.cell.2020.02.012
  114. Ximerakis, M., Lipnick, S. L., Innes, B. T., Simmons, S. K., Adiconis, X., Dionne, D., Mayweather, B. A., Nguyen, L., Niziolek, Z., Ozek, C., Butty, V. L., Isserlin, R., Buchanan, S. M., Levine, S. S., Regev, A., Bader, G. D., Levin, J. Z., & Rubin, L. L. (2019). Single-cell transcriptomic profiling of the aging mouse brain. Nature neuroscience, 22(10), 1696–1708. https://doi.org/10.1038/s41593-019-0491-3
  115. Xu, B., Gao, Y., Zhan, S., Xiong, F., Qiu, W., Qian, X., Wang, T., Wang, N., Zhang, D., Yang, Q., Wang, R., Bao, X., Dou, W., Tian, R., Meng, S., Gai, W. P., Huang, Y., Yan, X. X., Ge, W., & Ma, C. (2016). Quantitative protein profiling of hippocampus during human aging. Neurobiology of aging, 39, 46–56. https://doi.org/10.1016/j.neurobiolaging.2015.11.029
  116. Xu, B., Xiong, F., Tian, R., Zhan, S., Gao, Y., Qiu, W., Wang, R., Ge, W., & Ma, C. (2016). Temporal lobe in human aging: A quantitative protein profiling study of samples from Chinese Human Brain Bank. Experimental gerontology, 73, 31–41. https://doi.org/10.1016/j.exger.2015.11.016
  117. Yang, S., Liu, T., Li, S., Zhang, X., Ding, Q., Que, H., Yan, X., Wei, K., & Liu, S. (2008). Comparative proteomic analysis of brains of naturally aging mice. Neuroscience, 154(3), 1107–1120. https://doi.org/10.1016/j.neuroscience.2008.04.012
  118. Yang, S., Park, J. H., & Lu, H. C. (2023). Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Molecular neurodegeneration, 18(1), 49. https://doi.org/10.1186/s13024-023-00634-3
  119. Yang, Y., Tapias, V., Acosta, D., Xu, H., Chen, H., Bhawal, R., Anderson, E. T., Ivanova, E., Lin, H., Sagdullaev, B. T., Chen, J., Klein, W. L., Viola, K. L., Gandy, S., Haroutunian, V., Beal, M. F., Eliezer, D., Zhang, S., & Gibson, G. E. (2022). Altered succinylation of mitochondrial proteins, APP and tau in Alzheimer's disease. Nature communications, 13(1), 159. https://doi.org/10.1038/s41467-021-27572-2
  120. Yin, P., Tu, Z., Yin, A., Zhao, T., Yan, S., Guo, X., Chang, R., Zhang, L., Hong, Y., Huang, X., Zhou, J., Wang, Y., Li, S., & Li, X. J. (2015). Aged monkey brains reveal the role of ubiquitin-conjugating enzyme UBE2N in the synaptosomal accumulation of mutant huntingtin. Human molecular genetics, 24(5), 1350–1362. https://doi.org/10.1093/hmg/ddu544
  121. Ying, Y., & Li, H. (2022). Recent progress in the analysis of protein deamidation using mass spectrometry. Methods (San Diego, Calif.), 200, 42–57. https://doi.org/10.1016/j.ymeth.2020.06.009
  122. Yousefzadeh, M. J., Flores, R. R., Zhu, Y., Schmiechen, Z. C., Brooks, R. W., Trussoni, C. E., Cui, Y., Angelini, L., Lee, K. A., McGowan, S. J., Burrack, A. L., Wang, D., Dong, Q., Lu, A., Sano, T., O'Kelly, R. D., McGuckian, C. A., Kato, J. I., Bank, M. P., Wade, E. A., … Niedernhofer, L. J. (2021). An aged immune system drives senescence and ageing of solid organs. Nature, 594(7861), 100–105. https://doi.org/10.1038/s41586-021-03547-7
  123. Yu, A. Q., Wang, J., Jiang, S. T., Yuan, L. Q., Ma, H. Y., Hu, Y. M., Han, X. M., Tan, L. M., & Wang, Z. X. (2021). SIRT7-Induced PHF5A Decrotonylation Regulates Aging Progress Through Alternative Splicing-Mediated Downregulation of CDK2. Frontiers in cell and developmental biology, 9, 710479. https://doi.org/10.3389/fcell.2021.710479
  124. Yuan, J. J., Zhang, Q., Gong, C. X., Wang, F. X., Huang, J. C., Yang, G. Q., Liu, L., Zhou, K., Xu, R., Chen, Q., Zhou, Y., Xiong, X. Y., & Yang, Q. W. (2019). Young plasma ameliorates aging-related acute brain injury after intracerebral hemorrhage. Bioscience reports, 39(5), BSR20190537. https://doi.org/10.1042/BSR20190537
  125. Zhang, M., Flury, S., Kim, C. K., Chung, W. C. J., Kirk, J. A., & Pak, T. R. (2021). Absolute Quantification of Phosphorylated ERβ Amino Acids in the Hippocampus of Women and in A Rat Model of Menopause. Endocrinology, 162(9), bqab122. https://doi.org/10.1210/endocr/bqab122
  126. Zhang, S., Zhu, R., Pan, B., Xu, H., Olufemi, M. F., Gathagan, R. J., Li, Y., Zhang, L., Zhang, J., Xiang, W., Kagan, E. M., Cao, X., Yuan, C., Kim, S. J., Williams, C. K., Magaki, S., Vinters, H. V., Lashuel, H. A., Garcia, B. A., James Petersson, E., … Peng, C. (2023). Post-translational modifications of soluble α-synuclein regulate the amplification of pathological α-synuclein. Nature neuroscience, 26(2), 213–225. https://doi.org/10.1038/s41593-022-01239-7
  127. Zheng, Y., Tao, S., Liu, Y., Liu, J., Sun, L., Zheng, Y., Tian, Y., Su, P., Zhu, X., & Xu, F. (2022). Basal Forebrain-Dorsal Hippocampus Cholinergic Circuit Regulates Olfactory Associative Learning. International journal of molecular sciences, 23(15), 8472. https://doi.org/10.3390/ijms23158472

How to Cite

“Application of Proteomics in brain’s Aging Research ”. Human Brain, vol. 2, no. 3, Jan. 2024, https://doi.org/10.37819/hb.3.1778.

How to Cite

“Application of Proteomics in brain’s Aging Research ”. Human Brain, vol. 2, no. 3, Jan. 2024, https://doi.org/10.37819/hb.3.1778.

HTML
232

Total
117

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Yujia Tan, Fengling Luo, Yongchang Wei, Pan Liu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Most read articles by the same author(s)