Skip to main content Skip to main navigation menu Skip to site footer

Improving the understanding of neural mechanisms and guiding targeted therapy for clinical syndrome after thalamic infarction with advanced neuroimaging

  • Chen Ye
  • Ruosu Pan
  • Bo Wu

Abstract

Thalamic infarction can result in a diverse array of symptoms, including motor and sensory deficits, memory and attention difficulties, and alterations in mood and behavior; these symptoms are collectively referred to as thalamic infarction syndrome. The neural mechanisms underlying these symptoms are not yet fully understood, hampering the development of effective and individualized treatments. The current understanding of the pathology of thalamic infarction syndrome is mainly based on conventional computed tomography/magnetic resonance imaging scans, which reveal blood supply to various nuclei groups and clinical features. Thalamic infarction syndrome can be categorized into four groups according to the affected territory and associated vascular syndrome. Recent advancements in neuroimaging techniques, which enable the precise identification of affected pivotal thalamic subnuclei, altered brain structures, white matter pathway integrity, abnormal neural activity, and maladaptive states of brain networks, can enhance our understanding of the clinical mechanisms and inform the development of more effective therapeutic strategies. This review summarizes research on the pathological neural mechanisms of thalamic infarction syndrome and highlights future directions.

Section

References

  1. Aggleton, J. P., O'Mara, S. M., Vann, S. D., Wright, N. F., Tsanov, M., & Erichsen, J. T. (2010, Jun). Hippocampal-anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. Eur J Neurosci, 31(12), 2292-2307. https://doi.org/10.1111/j.1460-9568.2010.07251.x
  2. Annoni, J. M., Khateb, A., Gramigna, S., Staub, F., Carota, A., Maeder, P., & Bogousslavsky, J. (2003, Oct). Chronic cognitive impairment following laterothalamic infarcts: a study of 9 cases. Arch Neurol, 60(10), 1439-1443. https://doi.org/10.1001/archneur.60.10.1439
  3. Baliki, M. N., Mansour, A. R., Baria, A. T., & Apkarian, A. V. (2014). Functional reorganization of the default mode network across chronic pain conditions. PLoS One, 9(9), e106133. https://doi.org/10.1371/journal.pone.0106133
  4. Bates, E., Wilson, S. M., Saygin, A. P., Dick, F., Sereno, M. I., Knight, R. T., & Dronkers, N. F. (2003, May). Voxel-based lesion-symptom mapping. Nat Neurosci, 6(5), 448-450. https://doi.org/10.1038/nn1050
  5. Bee, L. A., & Dickenson, A. H. (2008, Nov 15). Descending facilitation from the brainstem determines behavioural and neuronal hypersensitivity following nerve injury and efficacy of pregabalin. Pain, 140(1), 209-223. https://doi.org/10.1016/j.pain.2008.08.008
  6. Behrens, T. E., Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshott, C. A., Boulby, P. A., Barker, G. J., Sillery, E. L., Sheehan, K., Ciccarelli, O., Thompson, A. J., Brady, J. M., & Matthews, P. M. (2003, Jul). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci, 6(7), 750-757. https://doi.org/10.1038/nn1075
  7. Bogousslavsky, J., Regli, F., & Assal, G. (1986, May-Jun). The syndrome of unilateral tuberothalamic artery territory infarction. Stroke, 17(3), 434-441. https://doi.org/10.1161/01.str.17.3.434
  8. Bogousslavsky, J., Regli, F., & Uske, A. (1988, Jun). Thalamic infarcts: clinical syndromes, etiology, and prognosis. Neurology, 38(6), 837-848. https://doi.org/10.1212/wnl.38.6.837
  9. Bonkhoff, A. K., Espinoza, F. A., Gazula, H., Vergara, V. M., Hensel, L., Michely, J., Paul, T., Rehme, A. K., Volz, L. J., Fink, G. R., Calhoun, V. D., & Grefkes, C. (2020, May 1). Acute ischaemic stroke alters the brain's preference for distinct dynamic connectivity states. Brain, 143(5), 1525-1540. https://doi.org/10.1093/brain/awaa101
  10. Bonkhoff, A. K., Schirmer, M. D., Bretzner, M., Etherton, M., Donahue, K., Tuozzo, C., Nardin, M., Giese, A. K., Wu, O., V, D. C., Grefkes, C., & Rost, N. S. (2021, May). Abnormal dynamic functional connectivity is linked to recovery after acute ischemic stroke. Hum Brain Mapp, 42(7), 2278-2291. https://doi.org/10.1002/hbm.25366
  11. Bordes, S., Werner, C., Mathkour, M., McCormack, E., Iwanaga, J., Loukas, M., Lammle, M., Dumont, A. S., & Tubbs, R. S. (2020, May). Arterial Supply of the Thalamus: A Comprehensive Review. World Neurosurg, 137, 310-318. https://doi.org/10.1016/j.wneu.2020.01.237
  12. Bullmore, E., & Sporns, O. (2009, Mar). Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci, 10(3), 186-198. https://doi.org/10.1038/nrn2575
  13. Bullmore, E., & Sporns, O. (2012, Apr 13). The economy of brain network organization. Nat Rev Neurosci, 13(5), 336-349. https://doi.org/10.1038/nrn3214
  14. Carrera, E., & Tononi, G. (2014, Sep). Diaschisis: past, present, future. Brain, 137(Pt 9), 2408-2422. https://doi.org/10.1093/brain/awu101
  15. Castaigne, P., Lhermitte, F., Buge, A., Escourolle, R., Hauw, J. J., & Lyon-Caen, O. (1981, Aug). Paramedian thalamic and midbrain infarct: clinical and neuropathological study. Ann Neurol, 10(2), 127-148. https://doi.org/10.1002/ana.410100204
  16. Chen, L., Luo, T., Wang, K., Zhang, Y., Shi, D., Lv, F., Li, Y., Li, Y., Li, Q., Fang, W., Zhang, Z., Peng, J., & Yang, H. (2019). Effects of thalamic infarction on the structural and functional connectivity of the ipsilesional primary somatosensory cortex. European Radiology, 29(9), 4904-4913. https://doi.org/10.1007/s00330-019-06068-0
  17. Chris Rorden, H.-O. K., and Leonardo Bonilha. (2007). Improving Lesion–Symptom Mapping. Journal of Cognitive Neuroscience
  18. Chuo Li, X. L., Sirun Liu, Anding Xu, Yusheng Zhang, Shihui Xing, Zhong Pei and Jinsheng Zeng. (2011). Early detection of secondary damage in ipsilateral thalamus after acute infarction at unilateral corona radiata by diffusion tensor imaging and magnetic resonance spectroscopy.
  19. Clarke, S., Assal, G., Bogousslavsky, J., Regli, F., Townsend, D. W., Leenders, K. L., & Blecic, S. (1994, Jan). Pure amnesia after unilateral left polar thalamic infarct: topographic and sequential neuropsychological and metabolic (PET) correlations. J Neurol Neurosurg Psychiatry, 57(1), 27-34. https://doi.org/10.1136/jnnp.57.1.27
  20. Conrad, J., Habs, M., Ruehl, R. M., Boegle, R., Ertl, M., Kirsch, V., Eren, O. E., Becker-Bense, S., Stephan, T., Wollenweber, F. A., Duering, M., Dieterich, M., & Zu Eulenburg, P. (2022, May). Reorganization of sensory networks after subcortical vestibular infarcts: A longitudinal symptom-related voxel-based morphometry study. Eur J Neurol, 29(5), 1514-1523. https://doi.org/10.1111/ene.15263
  21. Conrad, J., Habs, M., Ruehl, R. M., Bogle, R., Ertl, M., Kirsch, V., Eren, O. E., Becker-Bense, S., Stephan, T., Wollenweber, F. A., Duering, M., Zu Eulenburg, P., & Dieterich, M. (2022, Feb 4). White matter volume loss drives cortical reshaping after thalamic infarcts. Neuroimage Clin, 33, 102953. https://doi.org/10.1016/j.nicl.2022.102953
  22. Corbetta, M., Ramsey, L., Callejas, A., Baldassarre, A., Hacker, Carl D., Siegel, Joshua S., Astafiev, Serguei V., Rengachary, J., Zinn, K., Lang, Catherine E., Connor, Lisa T., Fucetola, R., Strube, M., Carter, Alex R., & Shulman, Gordon L. (2015). Common Behavioral Clusters and Subcortical Anatomy in Stroke. Neuron, 85(5), 927-941. https://doi.org/10.1016/j.neuron.2015.02.027
  23. Delboni Lemos, M., Faillenot, I., Tavares Lucato, L., Jacobsen Teixeira, M., Mendonca Barbosa, L., Joaquim Lopes Alho, E., Bastos Conforto, A., Lilian de Lima Rodrigues, A., Galhardoni, R., Aparecida da Silva, V., Listik, C., Rosi, J., Peyron, R., Garcia-Larrea, L., & Ciampi de Andrade, D. (2022, Apr 1). Dissecting neuropathic from poststroke pain: the white matter within. Pain, 163(4), 765-778. https://doi.org/10.1097/j.pain.0000000000002427
  24. Dieterich, M., Bartenstein, P., Spiegel, S., Bense, S., Schwaiger, M., & Brandt, T. (2005, Sep). Thalamic infarctions cause side-specific suppression of vestibular cortex activations. Brain, 128(Pt 9), 2052-2067. https://doi.org/10.1093/brain/awh551
  25. Dieterich, M., & Brandt, T. (2008, Oct). Functional brain imaging of peripheral and central vestibular disorders. Brain, 131(Pt 10), 2538-2552. https://doi.org/10.1093/brain/awn042
  26. Ducreux, D., Attal, N., Parker, F., & Bouhassira, D. (2006, Apr). Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain, 129(Pt 4), 963-976. https://doi.org/10.1093/brain/awl016
  27. Elias, G. J. B., De Vloo, P., Germann, J., Boutet, A., Gramer, R. M., Joel, S. E., Morlion, B., Nuttin, B., & Lozano, A. M. (2020, Dec). Mapping the network underpinnings of central poststroke pain and analgesic neuromodulation. Pain, 161(12), 2805-2819. https://doi.org/10.1097/j.pain.0000000000001998
  28. Emmanuel Carrera, J. B. (2006). The thalamus and behavior Effects of anatomically distinct strokes. Neurology.
  29. Favaretto, C., Allegra, M., Deco, G., Metcalf, N. V., Griffis, J. C., Shulman, G. L., Brovelli, A., & Corbetta, M. (2022, Aug 29). Subcortical-cortical dynamical states of the human brain and their breakdown in stroke. Nat Commun, 13(1), 5069. https://doi.org/10.1038/s41467-022-32304-1
  30. Finnerup, N. B. (2008, Oct). A review of central neuropathic pain states. Curr Opin Anaesthesiol, 21(5), 586-589. https://doi.org/10.1097/ACO.0b013e32830a4c11
  31. Foix, C. (1925). Les artères de l'axe encéphalique jusqu'au diencéphale inclusivement. Rev Neurol, 2, 160-179.
  32. G, P. (1976). Les arte`res du thalamus humain, I: arte`re et territoire thalamiques polaires de l’arte`re communicante poste ́rieure. Rev Neurol (Paris), 132, 297–307.
  33. Ghika-Schmid, F., & Bogousslavsky, J. (2000, Aug). The acute behavioral syndrome of anterior thalamic infarction: a prospective study of 12 cases. Ann Neurol, 48(2), 220-227. https://www.ncbi.nlm.nih.gov/pubmed/10939573
  34. Graff-Radford, N. R., Damasio, H., Yamada, T., Eslinger, P. J., & Damasio, A. R. (1985, Jun). Nonhaemorrhagic thalamic infarction. Clinical, neuropsychological and electrophysiological findings in four anatomical groups defined by computerized tomography. Brain, 108 ( Pt 2), 485-516. https://doi.org/10.1093/brain/108.2.485
  35. Graff-Radford, N. R., Eslinger, P. J., Damasio, A. R., & Yamada, T. (1984, Jan). Nonhemorrhagic infarction of the thalamus: behavioral, anatomic, and physiologic correlates. Neurology, 34(1), 14-23. https://doi.org/10.1212/wnl.34.1.14
  36. Griffis, J. C., Metcalf, N. V., Corbetta, M., & Shulman, G. L. (2019, Sep 3). Structural Disconnections Explain Brain Network Dysfunction after Stroke. Cell Rep, 28(10), 2527-2540 e2529. https://doi.org/10.1016/j.celrep.2019.07.100
  37. Guillery, R. W. (1995, Dec). Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. J Anat, 187 ( Pt 3), 583-592. https://www.ncbi.nlm.nih.gov/pubmed/8586557
  38. Guo, S., Zhang, X., Tao, W., Zhu, H., & Hu, Y. (2022, Sep). Long-term follow-up of motor cortex stimulation on central poststroke pain in thalamic and extrathalamic stroke. Pain Pract, 22(7), 610-620. https://doi.org/10.1111/papr.13137
  39. Gurley, K. L., & Edlow, J. A. (2019, Nov). Avoiding Misdiagnosis in Patients With Posterior Circulation Ischemia: A Narrative Review. Acad Emerg Med, 26(11), 1273-1284. https://doi.org/10.1111/acem.13830
  40. H, D. (1874). Recherches anatomiques sur la circulation de l’ ence ́ phale. Arch Physiol Norm Pathol, series 2, vol 1:60–91, 316–354, 915–957.
  41. He, M., Song, J., Luo, T., Wang, K., Li, Y., Lv, F., & Chen, L. (2021, Sep). Alteration of Resting-state Functional Connectivity in the Sensorimotor Network in Patients with Thalamic Infarction. Clin Neuroradiol, 31(3), 721-728. https://doi.org/10.1007/s00062-020-00966-3
  42. Holly Bridge, P. J., John Barbur,and Gordon T. Plant. (2011). Imaging Reveals Optic Tract Degeneration in Hemianopia. https://doi.org/10.1167/iovs.10-5708/-/DCSupplemental
  43. Hosomi, K., Seymour, B., & Saitoh, Y. (2015, May). Modulating the pain network--neurostimulation for central poststroke pain. Nat Rev Neurol, 11(5), 290-299. https://doi.org/10.1038/nrneurol.2015.58
  44. Jang, S. H., Kim, J., & Lee, H. D. (2018, Dec). Delayed-onset central poststroke pain due to degeneration of the spinothalamic tract following thalamic hemorrhage: A case report. Medicine (Baltimore), 97(50), e13533. https://doi.org/10.1097/MD.0000000000013533
  45. Jang, S. H., Lee, J., & Yeo, S. S. (2017, Dec). Central post-stroke pain due to injury of the spinothalamic tract in patients with cerebral infarction: a diffusion tensor tractography imaging study. Neural Regen Res, 12(12), 2021-2024. https://doi.org/10.4103/1673-5374.221159
  46. Jang, S. H., Seo, J. P., & Lee, S. J. (2019). Diffusion Tensor Tractography Studies of Central Post-stroke Pain Due to the Spinothalamic Tract Injury: A Mini-Review. Frontiers in Neurology, 10. https://doi.org/10.3389/fneur.2019.00787
  47. Jiang, S., Cao, T., Yan, Y., Yang, T., Yuan, Y., Deng, Q., Wu, T., Sun, J., Wu, S., Hao, Z. L., Anderson, C. S., & Wu, B. (2021, Aug). Lenticulostriate artery combined with neuroimaging markers of cerebral small vessel disease differentiate the pathogenesis of recent subcortical infarction. J Cereb Blood Flow Metab, 41(8), 2105-2115. https://doi.org/10.1177/0271678X21992622
  48. Johansen-Berg, H., Behrens, T. E., Sillery, E., Ciccarelli, O., Thompson, A. J., Smith, S. M., & Matthews, P. M. (2005, Jan). Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb Cortex, 15(1), 31-39. https://doi.org/10.1093/cercor/bhh105
  49. Kaden, E., Knosche, T. R., & Anwander, A. (2007, Aug 15). Parametric spherical deconvolution: inferring anatomical connectivity using diffusion MR imaging. NeuroImage, 37(2), 474-488. https://doi.org/10.1016/j.neuroimage.2007.05.012
  50. Kalia, L. V., & Lang, A. E. (2015, Aug 29). Parkinson's disease. Lancet, 386(9996), 896-912. https://doi.org/10.1016/S0140-6736(14)61393-3
  51. Kishi, M., Sakakibara, R., Nagao, T., Terada, H., & Ogawa, E. (2009). Thalamic infarction disrupts spinothalamocortical projection to the mid-cingulate cortex and supplementary motor area. Journal of the Neurological Sciences, 281(1-2), 104-107. https://doi.org/10.1016/j.jns.2009.03.012
  52. Klit, H., Finnerup, N. B., & Jensen, T. S. (2009, Sep). Central post-stroke pain: clinical characteristics, pathophysiology, and management. Lancet Neurol, 8(9), 857-868. https://doi.org/10.1016/S1474-4422(09)70176-0
  53. Koh, C. L., Yeh, C. H., Liang, X., Vidyasagar, R., Seitz, R. J., Nilsson, M., Connelly, A., & Carey, L. M. (2021, Jun 17). Structural Connectivity Remote From Lesions Correlates With Somatosensory Outcome Poststroke. Stroke, STROKEAHA120031520. https://doi.org/10.1161/STROKEAHA.120.031520
  54. Kopelman, M. D. (2015, Jul). What does a comparison of the alcoholic Korsakoff syndrome and thalamic infarction tell us about thalamic amnesia? Neurosci Biobehav Rev, 54, 46-56. https://doi.org/10.1016/j.neubiorev.2014.08.014
  55. Krause, T., Asseyer, S., Taskin, B., Flöel, A., Witte, A. V., Mueller, K., Fiebach, J. B., Villringer, K., Villringer, A., & Jungehulsing, G. J. (2014). The Cortical Signature of Central Poststroke Pain: Gray Matter Decreases in Somatosensory, Insular, and Prefrontal Cortices. Cerebral Cortex, 26(1), 80-88. https://doi.org/10.1093/cercor/bhu177
  56. Krause, T., Brunecker, P., Pittl, S., Taskin, B., Laubisch, D., Winter, B., Lentza, M. E., Malzahn, U., Villringer, K., Villringer, A., & Jungehulsing, G. J. (2012). Thalamic sensory strokes with and without pain: differences in lesion patterns in the ventral posterior thalamus. Journal of Neurology, Neurosurgery & Psychiatry, 83(8), 776-784. https://doi.org/10.1136/jnnp-2011-301936
  57. Langen, C. D., Cremers, L. G. M., de Groot, M., White, T., Ikram, M. A., Niessen, W. J., & Vernooij, M. W. (2018, Dec). Disconnection due to white matter hyperintensities is associated with lower cognitive scores. NeuroImage, 183, 745-756. https://doi.org/10.1016/j.neuroimage.2018.08.037
  58. Li, C., Ling, X., Liu, S., Xu, A., Zhang, Y., Xing, S., Pei, Z., & Zeng, J. (2011, May 5). Early detection of secondary damage in ipsilateral thalamus after acute infarction at unilateral corona radiata by diffusion tensor imaging and magnetic resonance spectroscopy. BMC Neurol, 11, 49. https://doi.org/10.1186/1471-2377-11-49
  59. Meyer, S., Kessner, S. S., Cheng, B., Bonstrup, M., Schulz, R., Hummel, F. C., De Bruyn, N., Peeters, A., Van Pesch, V., Duprez, T., Sunaert, S., Schrooten, M., Feys, H., Gerloff, C., Thomalla, G., Thijs, V., & Verheyden, G. (2016). Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits. Neuroimage Clin, 10, 257-266. https://doi.org/10.1016/j.nicl.2015.12.005
  60. Millington, R. S., Yasuda, C. L., Jindahra, P., Jenkinson, M., Barbur, J. L., Kennard, C., Cendes, F., Plant, G. T., & Bridge, H. (2014, Apr). Quantifying the pattern of optic tract degeneration in human hemianopia. J Neurol Neurosurg Psychiatry, 85(4), 379-386. https://doi.org/10.1136/jnnp-2013-306577
  61. Nemati, P. R., Backhaus, W., Feldheim, J., Bonstrup, M., Cheng, B., Thomalla, G., Gerloff, C., & Schulz, R. (2022). Brain network topology early after stroke relates to recovery. Brain Commun, 4(2), fcac049. https://doi.org/10.1093/braincomms/fcac049
  62. Percheron, G. (1973, Aug 29). The anatomy of the arterial supply of the human thalamus and its use for the interpretation of the thalamic vascular pathology. Z Neurol, 205(1), 1-13. https://doi.org/10.1007/BF00315956
  63. Puig, J., Blasco, G., Alberich-Bayarri, A., Schlaug, G., Deco, G., Biarnes, C., Navas-Marti, M., Rivero, M., Gich, J., Figueras, J., Torres, C., Daunis, I. E. P., Oramas-Requejo, C. L., Serena, J., Stinear, C. M., Kuceyeski, A., Soriano-Mas, C., Thomalla, G., Essig, M., Figley, C. R., Menon, B., Demchuk, A., Nael, K., Wintermark, M., Liebeskind, D. S., & Pedraza, S. (2018, Oct). Resting-State Functional Connectivity Magnetic Resonance Imaging and Outcome After Acute Stroke. Stroke, 49(10), 2353-2360. https://doi.org/10.1161/STROKEAHA.118.021319
  64. Rondina, J. M., Filippone, M., Girolami, M., & Ward, N. S. (2016). Decoding post-stroke motor function from structural brain imaging. Neuroimage Clin, 12, 372-380. https://doi.org/10.1016/j.nicl.2016.07.014
  65. Rudolphi-Solero, T., Trivino Ibanez, E. M., Aroui, T., Navidad, R. H., & Gomez-Rio, M. (2022, Apr 1). Dual-Phase 18F-Florbetaben PET/CT: Unsuspected Thalamic Infarction Mimicking Alzheimer Disease. Clin Nucl Med, 47(4), 333-335. https://doi.org/10.1097/RLU.0000000000003955
  66. Saez de Ocariz, M. M., Nader, J. A., Santos, J. A., & Bautista, M. (1996, Sep). Thalamic vascular lesions. Risk factors and clinical course for infarcts and hemorrhages. Stroke, 27(9), 1530-1536. https://doi.org/10.1161/01.str.27.9.1530
  67. Salt, T. (2001). EXPLORING THE THALAMUS.: By S. Murray Sherman and R. W. Guillery. 2000. New York: Academic Press. Price £39.95. Pp. 312. ISBN 0-12-305460-5. Brain, 124(10), 2120-2121. https://doi.org/10.1093/brain/124.10.2120
  68. Salvalaggio, A., De Filippo De Grazia, M., Zorzi, M., Thiebaut de Schotten, M., & Corbetta, M. (2020, Jul 1). Post-stroke deficit prediction from lesion and indirect structural and functional disconnection. Brain, 143(7), 2173-2188. https://doi.org/10.1093/brain/awaa156
  69. Scharf, A. C., Gronewold, J., Todica, O., Moenninghoff, C., Doeppner, T. R., de Haan, B., Bassetti, C. L. A., & Hermann, D. M. (2022, Jun). Evolution of Neuropsychological Deficits in First-Ever Isolated Ischemic Thalamic Stroke and Their Association With Stroke Topography: A Case-Control Study. Stroke, 53(6), 1904-1914. https://doi.org/10.1161/STROKEAHA.121.037750
  70. Schmahmann, J. D. (2003, Sep). Vascular syndromes of the thalamus. Stroke, 34(9), 2264-2278. https://doi.org/10.1161/01.STR.0000087786.38997.9E
  71. Seghier, M. L., Lazeyras, F., Vuilleumier, P., Schnider, A., & Carota, A. (2005, Mar). Functional magnetic resonance imaging and diffusion tensor imaging in a case of central poststroke pain. J Pain, 6(3), 208-212. https://doi.org/10.1016/j.jpain.2004.11.004
  72. Sieveritz, B., & Raghavan, R. T. (2021, Jun 9). The Central Thalamus: Gatekeeper or Processing Hub? J Neurosci, 41(23), 4954-4956. https://doi.org/10.1523/JNEUROSCI.0573-21.2021
  73. Sprenger, T., Seifert, C. L., Valet, M., Andreou, A. P., Foerschler, A., Zimmer, C., Collins, D. L., Goadsby, P. J., Tölle, T. R., & Chakravarty, M. M. (2012). Assessing the risk of central post-stroke pain of thalamic origin by lesion mapping. Brain, 135(8), 2536-2545. https://doi.org/10.1093/brain/aws153
  74. Stenset, V., Grambaite, R., Reinvang, I., Hessen, E., Cappelen, T., Bjornerud, A., Gjerstad, L., & Fladby, T. (2007). Diaschisis after thalamic stroke: a comparison of metabolic and structural changes in a patient with amnesic syndrome. Acta Neurol Scand Suppl, 187, 68-71. https://doi.org/10.1111/j.1600-0404.2007.00851.x
  75. Stockert, A., Hormig-Rauber, S., Wawrzyniak, M., Klingbeil, J., Schneider, H. R., Pirlich, M., Schob, S., Hoffmann, K. T., & Saur, D. (2022, Oct 27). Involvement of Thalamocortical Networks in Patients With Poststroke Thalamic Aphasia. Neurology. https://doi.org/10.1212/WNL.0000000000201488
  76. Tao, W., Wang, Z., Liu, J., Li, J., Deng, Y., Guo, W., Wei, W., Wu, B., & Liu, M. (2022). Acute Cerebral Microinfarcts in Acute Ischemic Stroke: Imaging and Clinical Significance. Cerebrovasc Dis, 51(6), 755-763. https://doi.org/10.1159/000524021
  77. Tatu, L., Moulin, T., Bogousslavsky, J., & Duvernoy, H. (1998, Jun). Arterial territories of the human brain: cerebral hemispheres. Neurology, 50(6), 1699-1708. https://doi.org/10.1212/wnl.50.6.1699
  78. Urits, I., Gress, K., Charipova, K., Orhurhu, V., Freeman, J. A., Kaye, R. J., Kaye, A. D., Cornett, E., Delahoussaye, P. J., & Viswanath, O. (2020, Jul 15). Diagnosis, Treatment, and Management of Dejerine-Roussy Syndrome: a Comprehensive Review. Curr Pain Headache Rep, 24(9), 48. https://doi.org/10.1007/s11916-020-00887-3
  79. Van Der Werf, Y. D., Weerts, J. G., Jolles, J., Witter, M. P., Lindeboom, J., & Scheltens, P. (1999, Jan). Neuropsychological correlates of a right unilateral lacunar thalamic infarction. J Neurol Neurosurg Psychiatry, 66(1), 36-42. https://doi.org/10.1136/jnnp.66.1.36
  80. Vestergaard, K., Nielsen, J., Andersen, G., Ingeman-Nielsen, M., Arendt-Nielsen, L., & Jensen, T. S. (1995, May). Sensory abnormalities in consecutive, unselected patients with central post-stroke pain. Pain, 61(2), 177-186. https://doi.org/10.1016/0304-3959(94)00140-A
  81. Vogels, V., Dammers, R., van Bilsen, M., & Volovici, V. (2021, Jul 27). Deep Cerebral Perforators: Anatomical Distribution and Clinical Symptoms: An Overview. Stroke, STROKEAHA120034096. https://doi.org/10.1161/STROKEAHA.120.034096
  82. von Cramon, D. Y., Hebel, N., & Schuri, U. (1985, Dec). A contribution to the anatomical basis of thalamic amnesia. Brain, 108 ( Pt 4), 993-1008. https://doi.org/10.1093/brain/108.4.993
  83. Wang, P., Zang, Z., Zhang, M., Cao, Y., Zhao, Z., Shan, Y., Ma, Q., & Lu, J. (2021). Longitudinal Changes of Sensorimotor Resting-State Functional Connectivity Differentiate between Patients with Thalamic Infarction and Pontine Infarction. Neural Plast, 2021, 7031178. https://doi.org/10.1155/2021/7031178
  84. Ward, N. (2023, Jan 10). Grasping the opportunity: better behavioural diagnoses will lead to better treatments for stroke. Brain. https://doi.org/10.1093/brain/awad001
  85. Weder, B., Knorr, U., Herzog, H., Nebeling, B., Kleinschmidt, A., Huang, Y., Steinmetz, H., Freund, H. J., & Seitz, R. J. (1994, Jun). Tactile exploration of shape after subcortical ischaemic infarction studied with PET. Brain, 117 ( Pt 3), 593-605. https://doi.org/10.1093/brain/117.3.593
  86. Weishaupt, N., Riccio, P., Dobbs, T., Hachinski, V. C., & Whitehead, S. N. (2015, Jun 17). Characterization of Behaviour and Remote Degeneration Following Thalamic Stroke in the Rat. Int J Mol Sci, 16(6), 13921-13936. https://doi.org/10.3390/ijms160613921
  87. Willoch, F., Schindler, F., Wester, H. J., Empl, M., Straube, A., Schwaiger, M., Conrad, B., & Tolle, T. R. (2004, Apr). Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain, 108(3), 213-220. https://doi.org/10.1016/j.pain.2003.08.014
  88. Wu, S., Wu, B., Liu, M., Chen, Z., Wang, W., Anderson, C. S., Sandercock, P., Wang, Y., Huang, Y., Cui, L., Pu, C., Jia, J., Zhang, T., Liu, X., Zhang, S., Xie, P., Fan, D., Ji, X., Wong, K. L., Wang, L., & China Stroke Study, C. (2019, Apr). Stroke in China: advances and challenges in epidemiology, prevention, and management. Lancet Neurol, 18(4), 394-405. https://doi.org/10.1016/S1474-4422(18)30500-3
  89. Xia, C., Zhou, J., Lu, C., Wang, Y., Tang, T., Cai, Y., & Ju, S. (2021, Jul). Characterizing Diaschisis-Related Thalamic Perfusion and Diffusion After Middle Cerebral Artery Infarction. Stroke, 52(7), 2319-2327. https://doi.org/10.1161/STROKEAHA.120.032464
  90. Xu, T., Jha, A., & Nachev, P. (2018, Jul 1). The dimensionalities of lesion-deficit mapping. Neuropsychologia, 115, 134-141. https://doi.org/10.1016/j.neuropsychologia.2017.09.007
  91. Yan, S., Zhang, G., Zhou, Y., Tian, T., Qin, Y., Wu, D., Lu, J., Zhang, S., Liu, W. V., & Zhu, W. (2022, Mar). Abnormalities of Cortical Morphology and Structural Covariance Network in Patients with Subacute Basal Ganglia Stroke. Acad Radiol, 29 Suppl 3, S157-S165. https://doi.org/10.1016/j.acra.2021.08.011
  92. Yan, Y., Jiang, S., Yang, T., Yuan, Y., Wang, C., Deng, Q., Wu, T., Tang, L., Wu, S., Sun, J., & Wu, B. (2022, Mar 17). Lenticulostriate artery length and middle cerebral artery plaque as predictors of early neurological deterioration in single subcortical infarction. Int J Stroke, 17474930221081639. https://doi.org/10.1177/17474930221081639
  93. Ye, C., Kwapong, W. R., Tao, W., Lu, K., Pan, R., Wang, A., Liu, J., Liu, M., & Wu, B. (2022). Alterations of optic tract and retinal structure in patients after thalamic stroke. Front Aging Neurosci, 14, 942438. https://doi.org/10.3389/fnagi.2022.942438
  94. Ye, C., Kwapong, W. R., Tao, W., Lu, K., Pan, R., Wang, A., Liu, J., Liu, M., & Wu, B. (2022). Characterization of Macular Structural and Microvascular Changes in Thalamic Infarction Patients: A Swept-Source Optical Coherence Tomography–Angiography Study. Brain Sciences, 12(5), 518. https://www.mdpi.com/2076-3425/12/5/518
  95. Yin, D., Yan, X., Fan, M., Hu, Y., Men, W., Sun, L., & Song, F. (2013, Jul). Secondary degeneration detected by combining voxel-based morphometry and tract-based spatial statistics in subcortical strokes with different outcomes in hand function. AJNR Am J Neuroradiol, 34(7), 1341-1347. https://doi.org/10.3174/ajnr.A3410

How to Cite

“Improving the Understanding of Neural Mechanisms and Guiding Targeted Therapy for Clinical Syndrome After Thalamic Infarction With Advanced Neuroimaging”. Human Brain, vol. 2, no. 1, Mar. 2023, https://doi.org/10.37819/hb.1.307.

How to Cite

“Improving the Understanding of Neural Mechanisms and Guiding Targeted Therapy for Clinical Syndrome After Thalamic Infarction With Advanced Neuroimaging”. Human Brain, vol. 2, no. 1, Mar. 2023, https://doi.org/10.37819/hb.1.307.

HTML
278

Total
66 19

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Chen Ye, Ruosu Pan, Bo Wu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.