Skip to main content Skip to main navigation menu Skip to site footer

Clinical Practice Guideline for Adolescent and Adult Patients with Spinal Muscular Atrophy – Part 3

  • Yi Dai
  • Liying Cui

Abstract

In recent years, the field of spinal muscular atrophy (SMA) has made progress in multidisciplinary care and disease-modifying therapies. Survival and the quality of life of patients have significantly improved. However, no clinical practice guidelines exist for the management of SMA in adult and adolescent patients. Multidisciplinary experts from a number of tertiary medical centers in China, specializing in the diagnosis and treatment of SMA, came together to remedy this using evidence-based medicine. This guideline serves as an instrumental reference for the standardized care of Chinese SMA patients.

Section

References

  1. 1. Corsello A, Scatigno L, Pascuzzi MC, et al. Nutritional, Gastrointestinal and Endo-Metabolic Challenges in the Management of Children with Spinal Muscular Atrophy Type 1. Nutrients. 2021;13(7):2400.
  2. 2. Wasserman HM, Hornung LN, Stenger PJ, et al. Low bone mineral density and fractures are highly prevalent in pediatric patients with spinal muscular atrophy regardless of disease severity. Neuromuscul Disord. 2017;27(4):331-337.
  3. 3. Kilpinen-Loisa P, Paasio T, Soiva M, et al. Low bone mass in patients with motor disability: prevalence and risk factors in 59 Finnish children. Dev Med Child Neurol. 2010;52(3):276-282.
  4. 4. Bonewald L. Use it or lose it to age: A review of bone and muscle communication. Bone. 2019;120:212-218.
  5. 5. Li G, Zhang L, Wang D, et al. Muscle-bone crosstalk and potential therapies for sarco-osteoporosis. J Cell Biochem. 2019;120(9):14262-14273.
  6. 6. Chinese Society of Osteoporosis and Bone Mineral Research. Clinical guidelines for the diagnosis and treatment of primary osteoporosis (2022) [in Chinese]. Chin J Osteoporos Bone Miner Res. 2022;15(6):573-611.
  7. 7. Yu F, Xu Y, Hou Y, et al. Age-, Site-, and Sex-Specific Normative Centile Curves for HR-pQCT-Derived Microarchitectural and Bone Strength Parameters in a Chinese Mainland Population. J Bone Miner Res. 2020;35(11):2159-2170.
  8. 8. Peng X, Qu Y, Li X, et al. Bone mineral density and its influencing factors in Chinese children with spinal muscular atrophy types 2 and 3. BMC Musculoskelet Disord. 2021;22(1):729.
  9. 9. Vai S, Bianchi ML, Moroni I, et al. Bone and Spinal Muscular Atrophy. Bone. 2015;79:116-120.
  10. 10. Shanmugarajan S, Tsuruga E, Swoboda KJ, et al. Bone loss in survival motor neuron (Smn(-/-) SMN2) genetic mouse model of spinal muscular atrophy. J Pathol. 2009;219(1):52-60.
  11. 11. Chinese Society of Osteoporosis and Bone Mineral Research. Clinical application guidelines for bone turnover biochemical markers [in Chinese]. Chin J Osteoporos Bone Miner Res. 2021;14(4):321-336.
  12. 12. Chinese Society of Osteoporosis and Bone Mineral Research. Consensus on clinical application of vitamin D and its analogs [in Chinese]. Chin J Osteoporos Bone Miner Res. 2018;11(1):1-19.
  13. 13. Chinese Nutrition Society. Dietary reference intakes for Chinese residents (2013 edition) [in Chinese]. Beijing: Science Press; 2013.
  14. 14. Nasomyont N, Hornung LN, Wasserman H. Intravenous bisphosphonate therapy in children with spinal muscular atrophy. Osteoporos Int. 2020;31(5):995-1000.
  15. 15. Kutilek S. Denosumab Treatment of Severe Disuse Osteoporosis in a Boy With Spinal Muscular Atrophy. Acta Med Iran. 2017;55(10):658-660.
  16. 16. Nasomyont N, Keefe C, Tian C, et al. Safety and efficacy of teriparatide treatment for severe osteoporosis in patients with Duchenne muscular dystrophy. Osteoporos Int. 2020;31(12):2449-2459.
  17. 17. Bruce AK, Jacobsen E, Dossing H, et al. Hypoglycaemia in spinal muscular atrophy. Lancet. 1995;346(8975):609-610.
  18. 18. Berti B, Onesimo R, Leone D, et al. Hypoglycaemia in patients with type 1 SMA: an underdiagnosed problem? Arch Dis Child. 2020;105(7):707.
  19. 19. Ørngreen MC, Andersen AG, Eisum AS, et al. Prolonged fasting-induced hyperketosis, hypoglycaemia and impaired fat oxidation in child and adult patients with spinal muscular atrophy type II. Acta Paediatr. 2021;110(12):3367-3375.
  20. 20. Nery FC, Siranosian JJ, Rosales I, et al. Impaired kidney structure and function in spinal muscular atrophy. Neurol Genet. 2019;5(5):e353.
  21. 21. Djordjevic SA, Milic-Rasic V, Brankovic V, et al. Glucose and lipid metabolism disorders in children and adolescents with spinal muscular atrophy types 2 and 3. Neuromuscul Disord. 2021;31(4):291-299.
  22. 22. Davis RH, Miller EA, Zhang RZ, et al. Responses to Fasting and Glucose Loading in a Cohort of Well Children with Spinal Muscular Atrophy Type II. J Pediatr. 2015;167(6):1362-1368.e1.
  23. 23. Kölbel H, Hauffa BP, Wudy SA, et al. Hyperleptinemia in children with autosomal recessive spinal muscular atrophy type I-III. PLoS One. 2017;12(3):e0173144.
  24. 24. Brener A, Sagi L, Shtamler A, et al. Insulin-like growth factor-1 status is associated with insulin resistance in young patients with spinal muscular atrophy. Neuromuscul Disord. 2020;30(11):888-896.
  25. 25. Bowerman M, Swoboda KJ, Michalski JP, et al. Glucose metabolism and pancreatic defects in spinal muscular atrophy. Ann Neurol. 2012;72(2):256-268.
  26. 26. Lamarca NH, Golden L, John RM, et al. Diabetic Ketoacidosis in an Adult Patient With Spinal Muscular Atrophy Type II: Further Evidence of Extraneural Pathology Due to Survival Motor Neuron 1 Mutation? J Child Neurol. 2013;28(11):1517-1520.
  27. 27. Li YJ, Chen TH, Wu YZ, et al. Metabolic and nutritional issues associated with spinal muscular atrophy. Nutrients. 2020;12(12):3842.
  28. 28. Deguise MO, Chehade L, Kothary R. Metabolic dysfunction in spinal muscular atrophy. Int J Mol Sci. 2021;22(11):5913.
  29. 29. Chinese Diabetes Society. Guidelines for the prevention and treatment of type 2 diabetes in China (2020 edition) [in Chinese]. Chin J Diabetes. 2021;13(4):315-409.
  30. 30. Deguise MO, Baranello G, Mastella C, et al. Abnormal fatty acid metabolism is a core component of spinal muscular atrophy. Ann Clin Transl Neurol. 2019;6(8):1519-1532.
  31. 31. Ripolone M, Ronchi D, Violano R, et al. Impaired Muscle Mitochondrial Biogenesis and Myogenesis in Spinal Muscular Atrophy. JAMA Neurol. 2015;72(6):666-675.
  32. 32. Tein I, Sloane AE, Donner EJ, et al. Fatty acid oxidation abnormalities in childhood-onset spinal muscular atrophy: primary or secondary defect(s)? Pediatr Neurol. 1995;12(1):21-30.
  33. 33. Brener A, Lebenthal Y, Shtamler A, et al. The endocrine manifestations of spinal muscular atrophy, a real-life observational study. Neuromuscul Disord. 2020;30(4):270-276.
  34. 34. Chinese Society of Gastroenterology. 2020 Chinese expert consensus on gastroesophageal reflux disease [in Chinese]. Chin J Dig. 2020;40(10):649-663.
  35. 35. Schol J, Wauters L, Dickman R, et al. United European Gastroenterology (UEG) and European Society for Neurogastroenterology and Motility (ESNM) consensus on gastroparesis. United European Gastroenterol J. 2021;9(3):287-306.
  36. 36. Chinese Society of Gastroenterology, Functional Gastrointestinal Disease Collaborative Group. Chinese expert consensus on chronic constipation (2019, Guangzhou) [in Chinese]. Chin J Dig. 2019;39(9):577-598.
  37. 37. Dou P, Xiong H, Li RR, et al. Nutritional management of patients with spinal muscular atrophy [in Chinese]. Chin J Pract Pediatr. 2022;37(10):748-754.
  38. 38. Pediatric Collaborative Group of Chinese Society of Parenteral and Enteral Nutrition. Guidelines for clinical application of pediatric parenteral and enteral nutrition support in China [in Chinese]. Chin J Pediatr. 2010;48(6):436-441.
  39. 39. Mehta NM, Skillman HE, Irving SY, et al. Guidelines for the provision and assessment of nutrition support therapy in the pediatric critically ill patient: society of critical care medicine and American Society for Parenteral and Enteral Nutrition. JPEN J Parenter Enteral Nutr. 2017;41(5):706-742.
  40. 40. McCarthy H, Dixon M, Crabtree I, et al. The development and evaluation of the Screening Tool for the Assessment of Malnutrition in Paediatrics (STAMP©) for use by healthcare staff. J Hum Nutr Diet. 2012;25(4):311-318.
  41. 41. Mehta NM, Newman H, Tarrant S, et al. Nutritional status and nutrient intake challenges in Children with spinal muscular atrophy. Pediatr Neurol. 2016;57:80-83.
  42. 42. Beijing Medical Association Rare Disease Branch, Beijing Medical Association Medical Genetics Branch, et al. Expert consensus on multidisciplinary management of spinal muscular atrophy [in Chinese]. Chin Med J. 2019;99(19):1460-1467.
  43. 43. Baranello G, De Amicis R, Arnoldi MT, et al. Evaluation of body composition as a potential biomarker in spinal muscular atrophy. Muscle Nerve. 2020;61(4):530-534.
  44. 44. Rehabilitation Group of Chinese Pediatric Society, Physiotherapy Committee of Chinese Rehabilitation Medical Association. Expert consensus on rehabilitation management of spinal muscular atrophy [in Chinese]. Chin J Pediatr. 2022;60(9):883-887.
  45. 45. Turan Z, Topaloglu M, Ozyemisci TO. Medical research council-sumscore: a tool for evaluating muscle weakness in patients with post-intensive care syndrome. Crit Care. 2020;24(1):562.
  46. 46. Mercuri E, Finkel RS, Muntoni F, et al. Diagnosis and management of spinal muscular atrophy: Part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord. 2018;28(2):103-115.
  47. 47. Cuisset JM, Estournet B. Recommendations for the diagnosis and management of typical childhood spinal muscular atrophy. Rev Neurol (Paris). 2012;168(12):902-909.
  48. 48. Finkel RS, Mercuri E, Meyer OH, et al. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord. 2018;28(3):197-207.
  49. 49. Romano C, van Wynckel M, Hulst J, et al. European Society for Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for the Evaluation and Treatment of Gastrointestinal and Nutritional Complications in Children With Neurological Impairment. J Pediatr Gastroenterol Nutr. 2017;65(2):242-264.
  50. 50. Bertoli S, De Amicis R, Mastella C, et al. Spinal muscular atrophy, types I and II: what are the differences in body composition and resting energy expenditure? Clin Nutr. 2017;36(6):1674-1680.
  51. 51. Tang QY, Wang F, Tao YX, et al. Guidelines for clinical application of pediatric parenteral and enteral nutrition support in China [in Chinese]. Chin J Pediatr. 2010;48(6):436-441.
  52. 52. Chinese Expert Consensus Group on Dysphagia Nutrition Management. Chinese expert consensus on dysphagia nutrition management (2019 edition) [in Chinese]. Chin J Phys Med Rehabil. 2019;41(12):881-888.
  53. 53. Chinese Expert Consensus Group on Dysphagia Assessment and Treatment. Chinese expert consensus on dysphagia assessment and treatment (2017 edition) [in Chinese]. Chin J Phys Med Rehabil. 2018;40(1):1-10.
  54. 54. Cichero JA, Lam P, Steele CM, et al. Development of international terminology and definitions for texture-modified foods and thickened fluids used in dysphagia management: the IDDSI framework. Dysphagia. 2017;32(2):293-314.
  55. 55. Martinez EE, Quinn N, Arouchon K, et al. Comprehensive nutritional and metabolic assessment in patients with spinal muscular atrophy: opportunity for an individualized approach. Neuromuscul Disord. 2018;28(6):512-519.
  56. 56. Williams CL, Bollella M, Wynder EL. A new recommendation for dietary fiber in childhood. Pediatrics. 1995;96(5 Pt 2):985-988.
  57. 57. Yang J, Wang HP, Zhou L, Xu CF. Effect of dietary fiber on constipation: a meta analysis. World J Gastroenterol. 2012;18(48):7378-7383.
  58. 58. Farrar MA, Park SB, Vucic S, et al. Emerging therapies and challenges in spinal muscular atrophy. Ann Neurol. 2017;81(3):355-366.
  59. 59. Korinthenberg R, Sauer M, Ketelsen UP, et al. Congenital axonal neuropathy caused by deletions in the spinal muscular atrophy region. Ann Neurol. 1997;42(3):364-368.
  60. 60. Granger MW, Buschang PH, Throckmorton GS, et al. Masticatory muscle function in patients with spinal muscular atrophy. Am J Orthod Dentofacial Orthop. 1999;115(6):697-702.
  61. 61. Chi SI, Kim HJ, Seo KS, et al. Local anesthesia of the temporomandibular joint to reduce pain during mouth opening for dental treatment in a patient with spinal muscular atrophy. J Dent Anesth Pain Med. 2016;16(2):137-140.
  62. 62. Heul AMB, Eijk RPA, Wadman RI, et al. Mastication in patients with spinal muscular atrophy types 2 and 3 is characterized by abnormal efficiency, reduced endurance, and fatigue. Dysphagia. 2022;37(4):715-723.
  63. 63. Bruggen HW, Engel-Hoek L, Pol WL, et al. Impaired mandibular function in spinal muscular atrophy type II: need for early recognition. J Child Neurol. 2011;26(11):1392-1396.
  64. 64. Wadman RI, Bruggen HW, Witkamp D, et al. Bulbar muscle MRI changes in patients with SMA with reduced mouth opening and dysphagia. Neurology. 2014;83(12):1060-1066.
  65. 65. Cha TH, Oh DW, Shim JH. Noninvasive treatment strategy for swallowing problems related to prolonged nonoral feeding in spinal muscular atrophy type II. Dysphagia. 2010;25(3):261-264.
  66. 66. Wang X, Yang C, Sun F, et al. Effects of home-based swallowing training program on swallowing function in head and neck cancer patients undergoing radiotherapy [in Chinese]. Chin J Rehabil Theory Pract. 2022;28(2):227-231.
  67. 67. Jin CX, Yang L, Liu Y, et al. Research progress on the correlation between temporomandibular disorders and body posture [in Chinese]. Stomatology. 2022;42(4):368-372.
  68. 68. Morris EHL, Estilow T, Glanzman AM, et al. Improving temporomandibular range of motion in people with Duchenne muscular dystrophy and spinal muscular atrophy. Am J Occup Ther. 2020;74(2):7402205080p1-7402205080p10.
  69. 69. Geary RS, Yu RZ, Levin AA. Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides. Curr Opin Investig Drugs. 2001;2(4):562-573.
  70. 70. U.S. Food and Drug Administration. SPINRAZA (nusinersen) injection, for intrathecal use [Internet]. Silver Spring: FDA; 2016 [updated 2016 Dec 23; cited 2021 Oct 12]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/209531lbl.pdf
  71. 71. Chiriboga CA, Swoboda KJ, Darras BT, et al. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology. 2016;86(10):890-897.
  72. 72. Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017;377(18):1723-1732.
  73. 73. Mercuri E, Darras BT, Chiriboga CA, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med. 2018;378(7):625-635.
  74. 74. Vivo DC, Bertini E, Swoboda KJ, et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscul Disord. 2019;29(11):842-856.
  75. 75. Darras BT, Chiriboga CA, Iannaccone ST, et al. Nusinersen in later-onset spinal muscular atrophy: long-term results from the phase 1/2 studies. Neurology. 2019;92(21):e2492-e2506.
  76. 76. Michelson D, Ciafaloni E, Ashwal S, et al. Evidence in focus: nusinersen use in spinal muscular atrophy: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology. 2018;91(20):923-933.
  77. 77. Fu ZR, Zhu Y, Wang XL, et al. Real-world study on adverse reactions of nusinersen based on openFDA [in Chinese]. Chin J Hosp Pharm. 2021;41(16):1665-1669.
  78. 78. Sturm S, Nather AG, Jaber B, et al. A phase 1 healthy male volunteer single escalating dose study of the pharmacokinetics and pharmacodynamics of risdiplam (RG7916, RO7034067), a SMN2 splicing modifier. Br J Clin Pharmacol. 2019;85(1):181-193.
  79. 79. Wei SF, Sun ZS, Zhao ZG. Clinical pharmacology and application of risdiplam, a new drug for spinal muscular atrophy [in Chinese]. Chin J Clin Pharmacol. 2022;38(2):171-174.
  80. 80. Cleary Y, Gertz M, Grimsey P, et al. Model-based drug-drug interaction extrapolation strategy from adults to children: risdiplam in pediatric patients with spinal muscular atrophy. Clin Pharmacol Ther. 2021;110(6):1547-1557.
  81. 81. Darras BT, Masson R, Mazurkiewicz-Bełdzińska M, et al. Risdiplam-treated infants with type 1 spinal muscular atrophy versus historical controls. N Engl J Med. 2021;385(5):427-435.
  82. 82. Mercuri E, Baranello G, Boespflug-Tanguy O, et al. Risdiplam in types 2 and 3 spinal muscular atrophy: a randomised, placebo-controlled, dose-finding trial followed by 24 months of treatment. Eur J Neurol. 2023;30(7):1945-1946.
  83. 83. Mercuri E, Deconinck N, Mazzone ES, et al. Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): a phase 3, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2022;21(1):42-52.
  84. 84. Cartwright MS, Upadhya S. Selecting disease-modifying medications in 5q spinal muscular atrophy. Muscle Nerve. 2021;64(4):404-412.
  85. 85. U.S. Food and Drug Administration. Evrysdi (risdiplam) prescribing information [Internet]. Silver Spring: FDA; 2022 [cited 2022 Jun 17]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/213535s003s005lbl.pdf
  86. 86. Novartis Gene Therapies. ZOLGENSMA® (onasemnogene abeparvovec-xioi) suspension, for intravenous infusion [Internet]. Bannockburn: Novartis; 2019 [cited 2023 Oct 1]. Available from: https://www.zolgensma.com
  87. 87. Mendell JR, Al-Zaidy SA, Lehman KJ, et al. Five-year extension results of the phase 1 START trial of onasemnogene abeparvovec in spinal muscular atrophy. JAMA Neurol. 2021;78(7):834-841.
  88. 88. Day JW, Finkel RS, Chiriboga CA, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20(4):284-293.
  89. 89. Thomsen G, Burghes AHM, Hsieh C, et al. Biodistribution of onasemnogene abeparvovec DNA, mRNA and SMN protein in human tissue. Nat Med. 2021;27(10):1701-1711.
  90. 90. Andrews JA, Miller TM, Vijayakumar V, et al. CK-2127107 amplifies skeletal muscle response to nerve activation in humans. Muscle Nerve. 2018;57(5):729-734.
  91. 91. Rudnicki SA, Andrews JA, Duong T, et al. Reldesemtiv in patients with spinal muscular atrophy: a phase 2 hypothesis-generating study. Neurotherapeutics. 2021;18(2):1127-1136.
  92. 92. Pirruccello-Straub M, Jackson J, Wawersik S, et al. Blocking extracellular activation of myostatin as a strategy for treating muscle wasting. Sci Rep. 2018;8(1):2292.
  93. 93. Cote SM, Jackson J, Pirruccello-Straub M, et al. A sensitive and selective immunoassay for the quantitation of serum latent myostatin after in vivo administration of SRK-015, a selective inhibitor of myostatin activation. SLAS Discov. 2020;25(1):95-103.
  94. 94. Long KK, O'Shea KM, Khairallah RJ, et al. Specific inhibition of myostatin activation is beneficial in mouse models of SMA therapy. Hum Mol Genet. 2019;28(7):1076-1089.
  95. 95. Barrett D, Bilic S, Chyung Y, et al. A randomized phase 1 safety, pharmacokinetic and pharmacodynamic study of the novel myostatin inhibitor apitegromab (SRK-015): a potential treatment for spinal muscular atrophy. Adv Ther. 2021;38(6):3203-3222.
  96. 96. Scholar Rock. TOPAZ trial oral presentation at Cure SMA Conference [Internet]. Cambridge: Scholar Rock; 2020 [cited 2023 Oct 1]. Available from: https://scholarrock.com/wp-content/uploads/2020/06/CureSMA_2020_TOPAZOralPresentation.pdf
  97. 97. Tiziano FD, Lomastro R, Pinto AM, et al. Salbutamol increases survival motor neuron (SMN) transcript levels in leucocytes of spinal muscular atrophy (SMA) patients: relevance for clinical trial design. J Med Genet. 2010;47(12):856-858.
  98. 98. Tiziano FD, Lomastro R, Abiusi E, et al. Longitudinal evaluation of SMN levels as biomarker for spinal muscular atrophy: results of a phase IIb double-blind study of salbutamol. J Med Genet. 2019;56(5):293-300.
  99. 99. Kinali M, Mercuri E, Main M, et al. Pilot trial of albuterol in spinal muscular atrophy. Neurology. 2002;59(4):609-610.
  100. 100. Pane M, Staccioli S, Messina S, et al. Daily salbutamol in young patients with SMA type II. Neuromuscul Disord. 2008;18(7):536-540.
  101. 101. Frongia AL, Natera-De BD, Ortez C, et al. Salbutamol tolerability and efficacy in patients with spinal muscular atrophy type II. Neuromuscul Disord. 2019;29(7):517-524.
  102. 102. Khirani S, Dabaj I, Amaddeo A, et al. Effect of salbutamol on respiratory muscle strength in spinal muscular atrophy. Pediatr Neurol. 2017;73:78-87.e1.

How to Cite

“Clinical Practice Guideline for Adolescent and Adult Patients With Spinal Muscular Atrophy – Part 3”. Human Brain, vol. 3, no. 3, Mar. 2025, https://doi.org/10.37819/hb.3.2042.

How to Cite

“Clinical Practice Guideline for Adolescent and Adult Patients With Spinal Muscular Atrophy – Part 3”. Human Brain, vol. 3, no. 3, Mar. 2025, https://doi.org/10.37819/hb.3.2042.

HTML
11

Total
2

Citations
undefined

Share

Downloads

Article Details

License

Copyright (c) 2024 Yi Dai, Liying Cui

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.