Skip to main content Skip to main navigation menu Skip to site footer

Roles and Mechanisms of Lactylation Modification in Hypoxia-exacerbated Neuroinflammation

  • Xuechao Fei
  • Ming Zhao
  • Lingling Zhu

Abstract

Lactate is a product of cellular energy metabolism. In the brain, lactate shuttles between astrocytes, microglia, and neurons, playing an important role in coordinating cellular metabolism and signaling. Hypoxia causes a shift in cellular metabolism from oxidative phosphorylation to glycolysis, increasing lactate. In addition to being a metabolic substrate, lactate also acts as a signaling molecule. More interestingly, lactate accumulation can induce protein lactylation modification, a newly identified post-translational modification (PTM). Lactylation modifications occur on both histone and non-histone proteins and are involved in the regulation of numerous cellular processes, including tumorigenesis, immune inflammation, and embryonic development. In the context of neuroinflammation, our recently published report showed that hypoxia activates microglia and exacerbates neuroinflammation in the brain. This review summarizes the effects of hypoxia on lactate metabolism, as well as the process of lactylation and delactylation in microglia. The regulatory mechanisms of protein lactylation in hypoxia-exacerbated neuroinflammation are further discussed.

Section

References

  1. 1. Beard E, Lengacher S, DiaS S, Magistretti PJ, Finsterwald C. Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives. Front Physiol. 2021;12:825816.
  2. 2. Howarth C, Gleeson P, Attwell D. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab. 2012;32(7):1222-32.
  3. 3. Kellawan JM, Peltonen GL, Harrell JW, ET AL. Differential contribution of cyclooxygenase to basal cerebral blood flow and hypoxic cerebral vasodilation. Am J Physiol Regul Integr Comp Physiol. 2020;318(2):R468-R79.
  4. 4. Ren Sy, Xia Y, Yu B, ET AL. Growth hormone promotes myelin repair after chronic hypoxia via triggering pericyte-dependent angiogenesis. Neuron. 2024;112(13):2177-96 e6.
  5. 5. Chen X, Chen A, Wei J, ET AL. Dexmedetomidine alleviates cognitive impairment by promoting hippocampal neurogenesis via BDNF/TrkB/CREB signaling pathway in hypoxic-ischemic neonatal rats. CNS Neurosci Ther. 2024;30(1):e14486.
  6. 6. Marutani E, Morita M, Hirai S, ET AL. Sulfide catabolism ameliorates hypoxic brain injury. Nat Commun. 2021;12(1):3108.
  7. 7. Wang X, Cui L, Ji X. Cognitive impairment caused by hypoxia: from clinical evidences to molecular mechanisms. Metab Brain Dis. 2022;37(1):51-66.
  8. 8. Hou Y, Fan F, Xie N, ET AL. Rhodiola crenulata alleviates hypobaric hypoxia-induced brain injury by maintaining BBB integrity and balancing energy metabolism dysfunction. Phytomedicine. 2024;128:155529.
  9. 9. Hu X, Chen Y, Huo W, ET AL. Surface oxygen concentration on the Qinghai-Tibet Plateau (2017-2022). Sci Data. 2023;10(1):900.
  10. 10. Greenwald AC, Darnell NG, Hoefflin R, ET AL. Integrative spatial analysis reveals a multi-layered organization of glioblastoma. Cell. 2024;187(10):2485-501 e26.
  11. 11. LIU K, JIANG L, SHI Y, ET AL. Hypoxia-induced GLT8D1 promotes glioma stem cell maintenance by inhibiting CD133 degradation through N-linked glycosylation. Cell Death Differ. 2022;29(9):1834-49.
  12. 12. Barrit S, AL Barajraji M, EL HADWEH S, ET AL. Brain Tissue Oxygenation-Guided Therapy and Outcome in Traumatic Brain Injury: A Single-Center Matched Cohort Study. Brain Sci. 2022;12(7).
  13. 13. Andre C, Rehel S, Kuhn E, ET AL. Association of Sleep-Disordered Breathing With Alzheimer Disease Biomarkers in Community-Dwelling Older Adults: A Secondary Analysis of a Randomized Clinical Trial. JAMA Neurol. 2020;77(6):716-24.
  14. 14. Chokesuwattanaskul A, Chirakalwasan N, Jaimchariyatam N, ET AL. Associations between hypoxia parameters in obstructive sleep apnea and cognition, cortical thickness, and white matter integrity in middle-aged and older adults. Sleep Breath. 2021;25(3):1559-70.
  15. 15. Ghosh Mk, Chakraborty D, Sarkar S, Bhowmik A, Basu M. The interrelationship between cerebral ischemic stroke and glioma: a comprehensive study of recent reports. Signal Transduct Target Ther. 2019;4:42.
  16. 16. Roumes H, Goudeneche P, Pellerin L, Bouzier-SorE AK. Resveratrol and Some of Its Derivatives as Promising Prophylactic Treatments for Neonatal Hypoxia-Ischemia. Nutrients. 2022;14(18).
  17. 17. Wang MY, Zhou Y, Li WL, ZHU Lq, Liu D. Friend or foe: Lactate in neurodegenerative diseases. Ageing Res Rev. 2024;101:102452.
  18. 18. Shi C, Xu J, Ding Y, ET AL. MCT1-mediated endothelial cell lactate shuttle as a target for promoting axon regeneration after spinal cord injury. Theranostics. 2024;14(14):5662-81.
  19. 19. Brisson L, Bański P, Sboarina M, ET AL. Lactate Dehydrogenase B Controls Lysosome Activity and Autophagy in Cancer. Cancer Cell. 2016;30(3):418-31.
  20. 20. Laroche S, Stil A, Germain P, ET AL. Participation of L-Lactate and Its Receptor HCAR1/GPR81 in Neurovisual Development. Cells. 2021;10(7).
  21. 21. Zhang D, Tang Z, Huang H, ET AL. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575-80.
  22. 22. AJAMI B, BENNETT JL, KRIEGER C, TETZLAFF W, ROSSI FM. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci. 2007;10(12):1538-43.
  23. 23. Solomon JN, LEWIS CA, AJAMI B, ET AL. Origin and distribution of bone marrow-derived cells in the central nervous system in a mouse model of amyotrophic lateral sclerosis. Glia. 2006;53(7):744-53.
  24. 24. Tiberi A, Capsoni S, Cattaneo A. A Microglial Function for the Nerve Growth Factor: Predictions of the Unpredictable. Cells. 2022;11(11).
  25. 25. Zhou Y, Huang X, Zhao T, ET AL. Hypoxia augments LPS-induced inflammation and triggers high altitude cerebral edema in mice. Brain Behavior and Immunity. 2017;64:266-75.
  26. 26. Wang X, Chen G, Wan B, ET AL. NRF1-mediated microglial activation triggers high-altitude cerebral edema. J Mol Cell Biol. 2022;14(5).
  27. 27. Wang X, Hou Y, Li Q, ET AL. Rhodiola crenulata attenuates apoptosis and mitochondrial energy metabolism disorder in rats with hypobaric hypoxia-induced brain injury by regulating the HIF-1alpha/microRNA 210/ISCU1/2(COX10) signaling pathway. J Ethnopharmacol. 2019;241:111801.
  28. 28. Kong L, Wang Z, Liang X, ET AL. Monocarboxylate transporter 1 promotes classical microglial activation and pro-inflammatory effect via 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3. J Neuroinflammation. 2019;16(1):240.
  29. 29. Fei X, Chen L, Gao J, ET AL. p53 lysine-lactylated modification contributes to lipopolysaccharide-induced proinflammatory activation in BV2 cell under hypoxic conditions. Neurochem Int. 2024;178:105794.
  30. 30. Jiang X, Gao J, FEI X, ET AL. Global profiling of protein lactylation in microglia in experimental high-altitude cerebral edema. Cell Commun Signal. 2024;22(1):374.
  31. 31. Bakker J, Nijsten MWN, Jansen TC. Clinical use of lactate monitoring in critically ill patients. Annals of Intensive Care. 2013;3(1):12.
  32. 32. Pundir CS, Narwal V, Batra B. Determination of lactic acid with special emphasis on biosensing methods: A review. Biosens Bioelectron. 2016;86:777-90.
  33. 33. Strunz PP, Vuille-Dit-Bille RN, M RF, ET AL. Effect of high altitude on human postprandial (13) C-octanoate metabolism, intermediary metabolites, gastrointestinal peptides, and visceral perception. Neurogastroenterol Motil. 2022;34(3):e14225.
  34. 34. Edden RA, Harris AD, Murphy K, ET AL. Edited MRS is sensitive to changes in lactate concentration during inspiratory hypoxia. J Magn Reson Imaging. 2010;32(2):320-5.
  35. 35. Vestergaard MB, Lindberg U, Aachmann-Andersen NJ, ET AL. Acute hypoxia increases the cerebral metabolic rate - a magnetic resonance imaging study. J Cereb Blood Flow Metab. 2016;36(6):1046-58.
  36. 36. Urbanska K, Orzechowski A. Unappreciated Role of LDHA and LDHB to Control Apoptosis and Autophagy in Tumor Cells. Int J Mol Sci. 2019;20(9).
  37. 37. Sonnewald U, Muller TB, Westergaard N, ET AL. NMR spectroscopic study of cell cultures of astrocytes and neurons exposed to hypoxia: compartmentation of astrocyte metabolism. Neurochem Int. 1994;24(5):473-83.
  38. 38. Ainslie PN, Shaw AD, Smith KJ, ET AL. Stability of cerebral metabolism and substrate availability in humans during hypoxia and hyperoxia. Clin Sci (Lond). 2014;126(9):661-70.
  39. 39. Starkey J, Horstick EJ, Ackerman SD. Glial regulation of critical period plasticity. Front Cell Neurosci. 2023;17:1247335.
  40. 40. Magistretti PJ, Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci. 2018;19(4):235-49.
  41. 41. MENG X, WU W, TANG Y, ET AL. Lactate/Hydroxycarboxylic Acid Receptor 1 in Alzheimer's Disease: Mechanisms and Therapeutic Implications-Exercise Perspective. Mol Neurobiol. 2024.
  42. 42. Monsorno K, Buckinx A, Paolicelli RC. Microglial metabolic flexibility: emerging roles for lactate. Trends Endocrinol Metab. 2022;33(3):186-95.
  43. 43. Zhang Z, Li X, Yang F, ET AL. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat Commun. 2021;12(1):5872.
  44. 44. Zhou J, Zhang L, Peng J, ET AL. Astrocytic LRP1 enables mitochondria transfer to neurons and mitigates brain ischemic stroke by suppressing ARF1 lactylation. Cell Metab. 2024;36(9):2054-68.e14.
  45. 45. Guyon J, Fernandez-MONCADA I, LARRIEU CM, ET AL. Lactate dehydrogenases promote glioblastoma growth and invasion via a metabolic symbiosis. EMBO Mol Med. 2022;14(12):e15343.
  46. 46. CARPENTER KL, JALLOH I, HUTCHINSON PJ. Glycolysis and the significance of lactate in traumatic brain injury. Front Neurosci. 2015;9:112.
  47. 47. Lyons SA, Kettenmann H. Oligodendrocytes and microglia are selectively vulnerable to combined hypoxia and hypoglycemia injury in vitro. J Cereb Blood Flow Metab. 1998;18(5):521-30.
  48. 48. LI X, Jiang Y, Meisenhelder J, ET AL. Mitochondria-Translocated PGK1 Functions as a Protein Kinase to Coordinate Glycolysis and the TCA Cycle in Tumorigenesis. Mol Cell. 2016;61(5):705-19.
  49. 49. Taylor CT, Scholz CC. The effect of HIF on metabolism and immunity. Nat Rev Nephrol. 2022;18(9):573-87.
  50. 50. Rosko L, Smith VN, Yamazaki R, Huang JK. Oligodendrocyte Bioenergetics in Health and Disease. Neuroscientist. 2019;25(4):334-43.
  51. 51. Amaral AI, Hadera MG, Tavares JM, Kotter MR, Sonnewald U. Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells. Glia. 2016;64(1):21-34.
  52. 52. LI S, SHENG ZH. Oligodendrocyte-derived transcellular signaling regulates axonal energy metabolism. Curr Opin Neurobiol. 2023;80:102722.
  53. 53. Yoshioka A, Yamaya Y, Saiki S, ET AL. Non-N-methyl-D-aspartate glutamate receptors mediate oxygen--glucose deprivation-induced oligodendroglial injury. Brain Res. 2000;854(1-2):207-15.
  54. 54. Zhang N, Guan T, Shafiq K, ET AL. Compromised Lactate Efflux Renders Vulnerability of Oligodendrocyte Precursor Cells to Metabolic Stresses. ACS Chem Neurosci. 2020;11(17):2717-27.
  55. 55. Wang X, Fan W, Li N, ET AL. YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2. Genome Biol. 2023;24(1):87.
  56. 56. Wang Yt, Trzeciak Aj, Rojas Ws, Et Al. Metabolic adaptation supports enhanced macrophage efferocytosis in limited-oxygen environments. Cell metabolism. 2023;35(2):316-31.e6.
  57. 57. WANG GL, JIANG BH, RUE EA, SEMENZA GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12):5510-4.
  58. 58. Sanmarco LM, Rone JM, Polonio CM, ET AL. Lactate limits CNS autoimmunity by stabilizing HIF-1α in dendritic cells. Nature. 2023;620(7975):881-9.
  59. 59. REUSS AM, GROOS D, BUCHFELDER M, SAVASKAN N. The Acidic Brain-Glycolytic Switch in the Microenvironment of Malignant Glioma. Int J Mol Sci. 2021;22(11).
  60. 60. Ivashkiv LB. The hypoxia–lactate axis tempers inflammation. Nature Reviews Immunology. 2020;20(2):85-6.
  61. 61. Yang Z, Su W, Wei X, ET AL. HIF-1α drives resistance to ferroptosis in solid tumors by promoting lactate production and activating SLC1A1. Cell reports. 2023;42(8):112945.
  62. 62. Tripathi VK, Subramaniyan SA, Hwang I. Molecular and Cellular Response of Co-cultured Cells toward Cobalt Chloride (CoCl(2))-Induced Hypoxia. ACS Omega. 2019;4(25):20882-93.
  63. 63. MUNOZ-SANCHEZ J, CHANEZ-CARDENAS ME. The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol. 2019;39(4):556-70.
  64. 64. Wu Q, Liang X, Wang K, ET AL. Intestinal hypoxia-inducible factor 2α regulates lactate levels to shape the gut microbiome and alter thermogenesis. Cell metabolism. 2021;33(10):1988-2003.e7.
  65. 65. HALESTRAP AP. Monocarboxylic acid transport. Compr Physiol. 2013;3(4):1611-43.
  66. 66. Moreno Roig E, Groot Aj, Yaromina A, ET AL. HIF-1α and HIF-2α Differently Regulate the Radiation Sensitivity of NSCLC Cells. Cells-Basel. 2019;8(1).
  67. 67. Ishida Y, Takagi-Ohta K. Lactate production of mammalian intestinal and vascular smooth muscles under aerobic and hypoxic conditions. J Smooth Muscle Res. 1996;32(2):61-7.
  68. 68. Zhang Fl, Chen Xw, Wang Yf, ET AL. Microbiota-derived tryptophan metabolites indole-3-lactic acid is associated with intestinal ischemia/reperfusion injury via positive regulation of YAP and Nrf2. J Transl Med. 2023;21(1):264.
  69. 69. Yilmaz B, Schibli S, Macpherson Aj, Sokollik C. D-lactic Acidosis: Successful Suppression of D-lactate-Producing Lactobacillus by Probiotics. Pediatrics. 2018;142(3).
  70. 70. Poeze M, Froon Ah, Greve Jw, Ramsay G. D-lactate as an early marker of intestinal ischaemia after ruptured abdominal aortic aneurysm repair. Br J Surg. 1998;85(9):1221-4.
  71. 71. Márquez G, COLOMER D, BENAVENTE C, ET AL. Altitude-induced effects on neuromuscular, metabolic and perceptual responses before, during and after a high-intensity resistance training session. European Journal of Applied Physiology. 2023;123(10):2119-29.
  72. 72. WOORONS X, BOURDILLON N, VANDEWALLE H, ET AL. Exercise with hypoventilation induces lower muscle oxygenation and higher blood lactate concentration: role of hypoxia and hypercapnia. Eur J Appl Physiol. 2010;110(2):367-77.
  73. 73. AVNSTORP MB, RASMUSSEN P, BRASSARD P, ET AL. Cerebral water and ion balance remains stable when humans are exposed to acute hypoxic exercise. High Alt Med Biol. 2015;16(1):18-25.
  74. 74. Halestrap AP, WILSON MC. The monocarboxylate transporter family--role and regulation. IUBMB Life. 2012;64(2):109-19.
  75. 75. Roumes H, Dumont U, Sanchez S, ET AL. Neuroprotective role of lactate in rat neonatal hypoxia-ischemia. J Cereb Blood Flow Metab. 2021;41(2):342-58.
  76. 76. Buscemi L, Blochet C, Magistretti Pj, Hirt L. Hydroxycarboxylic Acid Receptor 1 and Neuroprotection in a Mouse Model of Cerebral Ischemia-Reperfusion. Front Physiol. 2021;12:689239.
  77. 77. Longhitano L, Vicario N, Forte S, ET AL. Lactate modulates microglia polarization via IGFBP6 expression and remodels tumor microenvironment in glioblastoma. Cancer Immunol Immunother. 2023;72(1):1-20.
  78. 78. Hong H, Su J, Zhang Y, ET AL. A novel role of lactate: Promotion of Akt-dependent elongation of microglial process. Int Immunopharmacol. 2023;119:110136.
  79. 79. Han H, Zhao Y, Du J, ET AL. Exercise improves cognitive dysfunction and neuroinflammation in mice through Histone H3 lactylation in microglia. Immun Ageing. 2023;20(1):63.
  80. 80. Zhang B, Li F, Shi Y, Et Al. Single-cell RNA sequencing integrated with bulk RNA sequencing analysis reveals the protective effects of lactate-mediated lactylation of microglia-related proteins on spinal cord injury. CNS Neurosci Ther. 2024;30(9):e70028.
  81. 81. Vizuete AFK, Fróes F, SEADY M, ET AL. Early effects of LPS-induced neuroinflammation on the rat hippocampal glycolytic pathway. J Neuroinflammation. 2022;19(1):255.
  82. 82. Liu Y, Yang S, Cai E, Et Al. Functions of lactate in the brain of rat with intracerebral hemorrhage evaluated with MRI/MRS and in vitro approaches. CNS Neurosci Ther. 2020;26(10):1031-44.
  83. 83. Pan Ry, He L, Zhang J, Et Al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease. Cell Metab. 2022;34(4):634-48 e6.
  84. 84. Yan Eb, Hellewell Sc, Bellander Bm, Agyapomaa Da, Morganti-Kossmann MC. Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. J Neuroinflammation. 2011;8:147.
  85. 85. Yang T, Wang Z, Li J, Shan F, Huang Q-Y. Cerebral Lactate Participates in Hypoxia-induced Anapyrexia Through its Receptor G Protein-coupled Receptor 81. Neuroscience. 2024;536:119-30.
  86. 86. Lankford HV, Hovis JK. Color Vision in the Mountains. Wilderness Environ Med. 2023;34(4):610-7.
  87. 87. Wang X, Hou Y, Li Q, ET AL. Rhodiola crenulata attenuates apoptosis and mitochondrial energy metabolism disorder in rats with hypobaric hypoxia-induced brain injury by regulating the HIF-1α/microRNA 210/ISCU1/2(COX10) signaling pathway. J Ethnopharmacol. 2019;241:111801.
  88. 88. Ta Nl, Seyfried TN. Influence of Serum and Hypoxia on Incorporation of [(14)C]-D-Glucose or [(14)C]-L-Glutamine into Lipids and Lactate in Murine Glioblastoma Cells. Lipids. 2015;50(12):1167-84.
  89. 89. Zhang D, Gao J, Zhu Z, ET AL. Lysine L-lactylation is the dominant lactylation isomer induced by glycolysis. Nat Chem Biol. 2024.
  90. 90. LI H, LIU C, LI R, ET AL. AARS1 and AARS2 sense l-lactate to regulate cGAS as global lysine lactyltransferases. Nature. 2024.
  91. 91. Zong Z, Xie F, Wang S, ET AL. Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis. Cell. 2024;187(10):2375-92.e33.
  92. 92. Gupta S, Jani J, Vijayasurya, ET AL. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J. 2023;37(11):e23219.
  93. 93. Ju J, Zhang H, Lin M, ET AL. The alanyl-tRNA synthetase AARS1 moonlights as a lactyltransferase to promote YAP signaling in gastric cancer. J Clin Invest. 2024;134(10).
  94. 94. Mao Y, Zhang J, Zhou Q, ET AL. Hypoxia induces mitochondrial protein lactylation to limit oxidative phosphorylation. Cell Res. 2024;34(1):13-30.
  95. 95. Varner El, Trefely S, Bartee D, ET AL. Quantification of lactoyl-CoA (lactyl-CoA) by liquid chromatography mass spectrometry in mammalian cells and tissues. Open Biol. 2020;10(9):200187.
  96. 96. Zeng Q, Wang K, Zhao Y, ET AL. Effects of the Acetyltransferase p300 on Tumour Regulation from the Novel Perspective of Posttranslational Protein Modification. Biomolecules. 2023;13(3).
  97. 97. Moreno-Yruela C, Zhang D, Wei W, ET AL. Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. Science advances. 2022;8(3):eabi6696.
  98. 98. Zhang XW, Li L, Liao M, ET AL. Thermal Proteome Profiling Strategy Identifies CNPY3 as a Cellular Target of Gambogic Acid for Inducing Prostate Cancer Pyroptosis. J Med Chem. 2024;67(12):10005-11.
  99. 99. Zong Z, Xie F, Wang S, ET AL. Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis. Cell. 2024;187(10):2375-92 e33.
  100. 100. Datta M, Staszewski O, Raschi E, ET AL. Histone Deacetylases 1 and 2 Regulate Microglia Function during Development, Homeostasis, and Neurodegeneration in a Context-Dependent Manner. Immunity. 2018;48(3):514-29.e6.
  101. 101. Zhang Q, Zhao K, Shen Q, ET AL. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature. 2015;525(7569):389-93.
  102. 102. Huang J, Wang X, Li N, ET AL. YY1 Lactylation Aggravates Autoimmune Uveitis by Enhancing Microglial Functions via Inflammatory Genes. Adv Sci (Weinh). 2024;11(19):e2308031.
  103. 103. Zhang XC, Liang HF, Luo XD, ET AL. YY1 promotes IL-6 expression in LPS-stimulated BV2 microglial cells by interacting with p65 to promote transcriptional activation of IL-6. Biochem Biophys Res Commun. 2018;502(2):269-75.
  104. 104. Wei L, Yang X, Wang J, ET AL. H3K18 lactylation of senescent microglia potentiates brain aging and Alzheimer's disease through the NFκB signaling pathway. J Neuroinflammation. 2023;20(1):208.
  105. 105. Pan RY, HE L, Zhang J, ET AL. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease. Cell metabolism. 2022;34(4):634-48.e6.
  106. 106. Zhang C, Zhou L, Zhang M, ET AL. H3K18 Lactylation Potentiates Immune Escape of Non-Small Cell Lung Cancer. Cancer Res. 2024.

How to Cite

“Roles and Mechanisms of Lactylation Modification in Hypoxia-Exacerbated Neuroinflammation”. Human Brain, vol. 3, no. 3, Nov. 2024, https://doi.org/10.37819/hb.3.2021.

How to Cite

“Roles and Mechanisms of Lactylation Modification in Hypoxia-Exacerbated Neuroinflammation”. Human Brain, vol. 3, no. 3, Nov. 2024, https://doi.org/10.37819/hb.3.2021.

HTML
12

Total
3

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Xuechao Fei, Ming Zhao, Lingling Zhu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.