Skip to main content Skip to main navigation menu Skip to site footer

Potential applications of nanomedicine in the treatment of Parkinson's disease

  • Qi Xu
  • Jiawei Liu
  • Haiyan Liua

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disease and leads to severe disability and even death in patients, causing a heavy social burden worldwide. Among the therapeutics for PD, pharmacotherapy is usually the first-line therapy and is typically the basic treatment for other therapeutics, such as surgery, exercise therapy and psychological intervention. Unfortunately, the existing PD therapeutic agents fail to cure the disease due to their low efficacy, cytotoxicity, severe side effects and poor cell targeting. With the development of nanotechnology and the emergence of nanomedicine, the application of nanomaterials has helped improve the efficacy of pharmacotherapy for PD. In the following review, the current pharmacotherapy for PD and its pros and cons are described. A summary of the nanomaterial types commonly used in nanomedicine and their applications in PD treatment is provided. Additionally, challenges related to using nanomaterials for PD pharmacotherapy are discussed.

Section

References

  1. Alexis, F., Pridgen, E., Molnar, L. K., & Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm, 5(4), 505-515. doi:10.1021/mp800051m
  2. Barnham, K. J., Masters, C. L., & Bush, A. I. (2004). Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov, 3(3), 205-214. doi:10.1038/nrd1330
  3. Blanco, E., Shen, H., & Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol, 33(9), 941-951. doi:10.1038/nbt.3330
  4. Buhlman, L. M. (2017). Parkin loss-of-function pathology: Premature neuronal senescence induced by high levels of reactive oxygen species? Mech Ageing Dev, 161(Pt A), 112-120. doi:10.1016/j.mad.2016.06.008
  5. Chen, G., Roy, I., Yang, C., & Prasad, P. N. (2016). Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem Rev, 116(5), 2826-2885. doi:10.1021/acs.chemrev.5b00148
  6. Costa, V., Suassuna, A. O. B., Brito, T. S. S., da Rocha, T. F., & Gianlorenco, A. C. (2023). Physical exercise for treating non-motor symptoms assessed by general Parkinson's disease scales: systematic review and meta-analysis of clinical trials. BMJ Neurol Open, 5(2), e000469. doi:10.1136/bmjno-2023-000469
  7. Cui, Y., Su, D., Zhang, J., Lam, J. S. T., Cao, S., Yang, Y., Piao, Y., Wang, Z., Zhou, J., Pan, H., & Feng, T. (2023). Dopaminergic versus anticholinergic treatment effects on physiologic complexity of hand tremor in Parkinson's disease: A randomized crossover study. CNS Neurosci Ther. doi:10.1111/cns.14516
  8. De Stefano, D., Carnuccio, R., & Maiuri, M. C. (2012). Nanomaterials toxicity and cell death modalities. J Drug Deliv, 2012, 167896. doi:10.1155/2012/167896
  9. Dudhipala, N., & Gorre, T. (2020). Neuroprotective Effect of Ropinirole Lipid Nanoparticles Enriched Hydrogel for Parkinson's Disease: In Vitro, Ex Vivo, Pharmacokinetic and Pharmacodynamic Evaluation. Pharmaceutics, 12(5). doi:10.3390/pharmaceutics12050448
  10. Fabbri, M., Ferreira, J. J., & Rascol, O. (2022). COMT Inhibitors in the Management of Parkinson's Disease. CNS Drugs, 36(3), 261-282. doi:10.1007/s40263-021-00888-9
  11. Fanshi, Z., Mei, L., Jinmei, T., Li, Z., Jun, Z., Changyin, Y., & Zucai, X. (2023). Levodopa-induced dyskinesia: interplay between the N-methyl-D-aspartic acid receptor and neuroinflammation . Frontiers in Immunology, 14, 1253273-1253273.
  12. Feng, W., Han, X., Hu, H., Chang, M., Ding, L., Xiang, H., Chen, Y., & Li, Y. (2021). 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat Commun, 12(1), 2203. doi:10.1038/s41467-021-22278-x
  13. Fox, S. H. (2013). Non-dopaminergic treatments for motor control in Parkinson's disease. Drugs, 73(13), 1405-1415. doi:10.1007/s40265-013-0105-4
  14. Fox, S. H., Katzenschlager, R., Lim, S. Y., Barton, B., de Bie, R. M. A., Seppi, K., Coelho, M., Sampaio, C., & Movement Disorder Society Evidence-Based Medicine, C. (2018). International Parkinson and movement disorder society evidence-based medicine review: Update on treatments for the motor symptoms of Parkinson's disease. Mov Disord, 33(8), 1248-1266. doi:10.1002/mds.27372
  15. Giuseppina, B., & Agnese, M. (2015). Liposomes as nanomedical devices. International journal of nanomedicine, 10(default), 975-999.
  16. Gonzalez-Latapi, P., Bhowmick, S. S., Saranza, G., & Fox, S. H. (2020). Non-Dopaminergic Treatments for Motor Control in Parkinson's Disease: An Update. CNS Drugs, 34(10), 1025-1044. doi:10.1007/s40263-020-00754-0
  17. Hanmei, L., Dan, Y., Wei, L., Qi, T., Liang, Z., & Qiang, P. (2020). Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy. Colloids and surfaces. B, Biointerfaces, 199, 111502-111502.
  18. Hao, C., Qu, A., Xu, L., Sun, M., Zhang, H., Xu, C., & Kuang, H. (2019). Chiral Molecule-mediated Porous Cu (x)O Nanoparticle Clusters with Antioxidation Activity for Ameliorating Parkinson's Disease. J Am Chem Soc, 141(2), 1091-1099. doi:10.1021/jacs.8b11856
  19. Jagaran, K., & Singh, M. (2022). Lipid Nanoparticles: Promising Treatment Approach for Parkinson's Disease. Int J Mol Sci, 23(16). doi:10.3390/ijms23169361
  20. Joshi, N., Basak, S., Kundu, S., De, G., Mukhopadhyay, A., & Chattopadhyay, K. (2015). Attenuation of the early events of alpha-synuclein aggregation: a fluorescence correlation spectroscopy and laser scanning microscopy study in the presence of surface-coated Fe3O4 nanoparticles. Langmuir, 31(4), 1469-1478. doi:10.1021/la503749e
  21. Junguang, W., Xuejing, C., Chun, K. P., Monika, M., Xiaoyu, W., Lin, B., & Chunying, C. (2021). Nanomaterials as novel agents for amelioration of Parkinson’s disease. Nano Today, 41.
  22. Kaushik, A. C., Bharadwaj, S., Kumar, S., & Wei, D.-Q. (2018). Nano-particle mediated inhibition of Parkinson’s disease using computational biology approach. Scientific Reports, 8(1), 1-8.
  23. Li, X., Huang, Z., Liao, Z., Liu, A., & Huo, S. (2023). Transformable nanodrugs for overcoming the biological barriers in the tumor environment during drug delivery. Nanoscale, 15(19), 8532-8547. doi:10.1039/d2nr06621a
  24. Liu, H., Han, Y., Wang, T., Zhang, H., Xu, Q., Yuan, J., & Li, Z. (2020). Targeting Microglia for Therapy of Parkinson's Disease by Using Biomimetic Ultrasmall Nanoparticles. J Am Chem Soc, 142(52), 21730-21742. doi:10.1021/jacs.0c09390
  25. Liu, Q., Zou, J., Chen, Z., He, W., & Wu, W. (2023). Current research trends of nanomedicines. Acta Pharm Sin B, 13(11), 4391-4416. doi:10.1016/j.apsb.2023.05.018
  26. Liu, Y., Luo, J., Liu, Y., Liu, W., Yu, G., Huang, Y., Yang, Y., Chen, X., & Chen, T. (2022). Brain-Targeted Biomimetic Nanodecoys with Neuroprotective Effects for Precise Therapy of Parkinson's Disease. ACS Cent Sci, 8(9), 1336-1349. doi:10.1021/acscentsci.2c00741
  27. Liwen, H., Xiao, Z., Zhaowen, D., Yilin, Q., Wenjing, W., Xihan, X., Hua, Y., Lihuan, B., Heping, W., Leyan, F., Jing, R., Xue, Y., Guanghui, M., Wei, W., & Xue, X. (2022). PEGylated 2D-nanomaterials alleviate Parkinson's disease by shielding PIP2 lipids to inhibit IP3 second messenger signaling. Nano Today, 46.
  28. Ma, Y., Yu, N., Lu, H., Shi, J., Zhang, Y., Chen, Z., & Jia, G. (2023). Titanium dioxide nanoparticles: revealing the mechanisms underlying hepatotoxicity and effects in the gut microbiota. Arch Toxicol, 97(8), 2051-2067. doi:10.1007/s00204-023-03536-x
  29. Medical Research Council Laboratory of Molecular Biology, F. C. A., Cambridge CB2 0QH, UK., & Department of Clinical Neurosciences, U. o. C., Hills Road, Cambridge CB2 2QH, UK. (2018). Parkinson's disease - the story of an eponym. Nature reviews. Neurology, 14(1), 57-62.
  30. Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov, 20(2), 101-124. doi:10.1038/s41573-020-0090-8
  31. Monge-Fuentes, V., Biolchi Mayer, A., Lima, M. R., Geraldes, L. R., Zanotto, L. N., Moreira, K. G., Martins, O. P., Piva, H. L., Felipe, M. S. S., Amaral, A. C., Bocca, A. L., Tedesco, A. C., & Mortari, M. R. (2021). Dopamine-loaded nanoparticle systems circumvent the blood-brain barrier restoring motor function in mouse model for Parkinson's Disease. Sci Rep, 11(1), 15185. doi:10.1038/s41598-021-94175-8
  32. Naz, F., Rahul, Fatima, M., Naseem, S., Khan, W., Mondal, A. C., & Siddique, Y. H. (2020). Ropinirole silver nanocomposite attenuates neurodegeneration in the transgenic Drosophila melanogaster model of Parkinson's disease. Neuropharmacology, 177, 108216. doi:10.1016/j.neuropharm.2020.108216
  33. Nguyen-Thi, P. T., Nguyen, T. T., Phan, H. L., Ho, T. T., Vo, T. V., & Vo, G. V. (2023). Cell membrane-based nanomaterials for therapeutics of neurodegenerative diseases. Neurochem Int, 170, 105612. doi:10.1016/j.neuint.2023.105612
  34. Peter J. Gawne, M. F., Marisa Papaluca, Jan Grimm, Paolo Decuzzi. (2023). New opportunities and old challenges in the clinical translation of nanotheranostics. Nature reviews materials.
  35. Poewe, W., Antonini, A., Zijlmans, J. C., Burkhard, P. R., & Vingerhoets, F. (2010). Levodopa in the treatment of Parkinson's disease: an old drug still going strong. Clin Interv Aging, 5, 229-238. doi:10.2147/cia.s6456
  36. Ren, Y., Zhao, X., Liang, X., Ma, P. X., & Guo, B. (2017). Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease. International Journal of Biological Macromolecules, 105(P1), 1079-1087.
  37. Rezazadeh Yazd, S. A., Gashtil, S., Moradpoor, M., Pishdar, S., Nabian, P., Kazemi, Z., & Naeim, M. (2023). Reducing depression and anxiety symptoms in patients with Parkinson's disease: The effectiveness of group cognitive behavioral therapy. Parkinsonism Relat Disord, 112, 105456. doi:10.1016/j.parkreldis.2023.105456
  38. Ruotolo, R., De Giorgio, G., Minato, I., Bianchi, M. G., Bussolati, O., & Marmiroli, N. (2020). Cerium Oxide Nanoparticles Rescue alpha-Synuclein-Induced Toxicity in a Yeast Model of Parkinson's Disease. Nanomaterials (Basel), 10(2). doi:10.3390/nano10020235
  39. Sardoiwala, M. N., Srivastava, A. K., Kaundal, B., Karmakar, S., & Choudhury, S. R. (2020). Recuperative effect of metformin loaded polydopamine nanoformulation promoting EZH2 mediated proteasomal degradation of phospho-alpha-synuclein in Parkinson's disease model. Nanomedicine, 24, 102088. doi:10.1016/j.nano.2019.102088
  40. Shen, X., Pan, D., Gong, Q., Gu, Z., & Luo, K. (2024). Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives. Bioact Mater, 32, 445-472. doi:10.1016/j.bioactmat.2023.10.017
  41. Singh, N., Savanur, M. A., Srivastava, S., D'Silva, P., & Mugesh, G. (2017). A Redox Modulatory Mn(3) O(4) Nanozyme with Multi-Enzyme Activity Provides Efficient Cytoprotection to Human Cells in a Parkinson's Disease Model. Angew Chem Int Ed Engl, 56(45), 14267-14271. doi:10.1002/anie.201708573
  42. Singh, S., Sharma, K., & Sharma, H. (2024). Green Extracts with Metal-based Nanoparticles for Treating Inflammatory Diseases: A Review. Curr Drug Deliv, 21(4), 544-570. doi:10.2174/1567201820666230602164325
  43. Sisubalan, N., Shalini, R., Ramya, S., Sivamaruthi, B. S., & Chaiyasut, C. (2023). Recent advances in nanomaterials for neural applications: opportunities and challenges. Nanomedicine (Lond). doi:10.2217/nnm-2023-0261
  44. Srivastava, A. K., Roy Choudhury, S., & Karmakar, S. (2020). Melatonin/polydopamine nanostructures for collective neuroprotection-based Parkinson's disease therapy. Biomater Sci, 8(5), 1345-1363. doi:10.1039/c9bm01602c
  45. Strauss, I., Kalia, S. K., & Lozano, A. M. (2014). Where are we with surgical therapies for Parkinson's disease? Parkinsonism and Related Disorders, 20, S187-S191.
  46. Urits, I., Swanson, D., Swett, M. C., Patel, A., Berardino, K., Amgalan, A., Berger, A. A., Kassem, H., Kaye, A. D., & Viswanath, O. (2020). A Review of Patisiran (ONPATTRO(R)) for the Treatment of Polyneuropathy in People with Hereditary Transthyretin Amyloidosis. Neurol Ther, 9(2), 301-315. doi:10.1007/s40120-020-00208-1
  47. Weber, D. O. (1999). Nanomedicine. Health Forum J, 42(4), 32, 36-37.
  48. WHO. (9 August 2023). Parkinson disease. Retrieved from https://www.who.int/news-room/fact-sheets/detail/parkinson-disease
  49. Xiang, Y., Wu, Q., Liang, L., Wang, X., Wang, J., Zhang, X., Pu, X., & Zhang, Q. (2012). Chlorotoxin-modified stealth liposomes encapsulating levodopa for the targeting delivery against Parkinson's disease in the MPTP-induced mice model. J Drug Target, 20(1), 67-75. doi:10.3109/1061186X.2011.595490
  50. Xiong, S., Li, Z., Liu, Y., Wang, Q., Luo, J., Chen, X., Xie, Z., Zhang, Y., Zhang, H., & Chen, T. (2020). Brain-targeted delivery shuttled by black phosphorus nanostructure to treat Parkinson's disease. Biomaterials, 260, 120339. doi:10.1016/j.biomaterials.2020.120339
  51. Ye, H., Robak, L. A., Yu, M., Cykowski, M., & Shulman, J. M. (2023). Genetics and Pathogenesis of Parkinson's Syndrome. Annu Rev Pathol, 18, 95-121. doi:10.1146/annurev-pathmechdis-031521-034145
  52. Yu-Qing, L., Yuanyang, M., Enquan, X., Huimin, J., Shu, Z., L., D. V., M., D. T., Yan-Mei, L., Zhi, Z., Weiwei, H., & Xiaobo, M. (2021). Nanozyme scavenging ROS for prevention of pathologic α-synuclein transmission in Parkinson’s disease. Nano Today, 36, 101027-.
  53. Zuné, J. v. R., Shameemah, A., Soraya, B., & Colin, K. (2021). Toxic Feedback Loop Involving Iron, Reactive Oxygen Species, α-Synuclein and Neuromelanin in Parkinson's Disease and Intervention with Turmeric. Molecular neurobiology, 58(11), 1-17.

How to Cite

Xu, Qi, et al. “Potential Applications of Nanomedicine in the Treatment of Parkinson’s Disease”. Human Brain, vol. 3, no. 1, Apr. 2024, doi:10.37819/hb.1.1810.

HTML
59

Total
27

Share

Downloads

Article Details

DOI: https://doi.org/10.37819/hb.1.1810

Published: 2024-04-27

Most Read This Month

License

Copyright (c) 2024 Qi Xu, Jiawei Liu, Haiyan Liua

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.