Potential applications of nanomedicine in the treatment of Parkinson's disease
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and leads to severe disability and even death in patients, causing a heavy social burden worldwide. Among the therapeutics for PD, pharmacotherapy is usually the first-line therapy and is typically the basic treatment for other therapeutics, such as surgery, exercise therapy and psychological intervention. Unfortunately, the existing PD therapeutic agents fail to cure the disease due to their low efficacy, cytotoxicity, severe side effects and poor cell targeting. With the development of nanotechnology and the emergence of nanomedicine, the application of nanomaterials has helped improve the efficacy of pharmacotherapy for PD. In the following review, the current pharmacotherapy for PD and its pros and cons are described. A summary of the nanomaterial types commonly used in nanomedicine and their applications in PD treatment is provided. Additionally, challenges related to using nanomaterials for PD pharmacotherapy are discussed.
References
- Alexis, F., Pridgen, E., Molnar, L. K., & Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm, 5(4), 505-515. doi:10.1021/mp800051m
- Barnham, K. J., Masters, C. L., & Bush, A. I. (2004). Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov, 3(3), 205-214. doi:10.1038/nrd1330
- Blanco, E., Shen, H., & Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol, 33(9), 941-951. doi:10.1038/nbt.3330
- Buhlman, L. M. (2017). Parkin loss-of-function pathology: Premature neuronal senescence induced by high levels of reactive oxygen species? Mech Ageing Dev, 161(Pt A), 112-120. doi:10.1016/j.mad.2016.06.008
- Chen, G., Roy, I., Yang, C., & Prasad, P. N. (2016). Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem Rev, 116(5), 2826-2885. doi:10.1021/acs.chemrev.5b00148
- Costa, V., Suassuna, A. O. B., Brito, T. S. S., da Rocha, T. F., & Gianlorenco, A. C. (2023). Physical exercise for treating non-motor symptoms assessed by general Parkinson's disease scales: systematic review and meta-analysis of clinical trials. BMJ Neurol Open, 5(2), e000469. doi:10.1136/bmjno-2023-000469
- Cui, Y., Su, D., Zhang, J., Lam, J. S. T., Cao, S., Yang, Y., Piao, Y., Wang, Z., Zhou, J., Pan, H., & Feng, T. (2023). Dopaminergic versus anticholinergic treatment effects on physiologic complexity of hand tremor in Parkinson's disease: A randomized crossover study. CNS Neurosci Ther. doi:10.1111/cns.14516
- De Stefano, D., Carnuccio, R., & Maiuri, M. C. (2012). Nanomaterials toxicity and cell death modalities. J Drug Deliv, 2012, 167896. doi:10.1155/2012/167896
- Dudhipala, N., & Gorre, T. (2020). Neuroprotective Effect of Ropinirole Lipid Nanoparticles Enriched Hydrogel for Parkinson's Disease: In Vitro, Ex Vivo, Pharmacokinetic and Pharmacodynamic Evaluation. Pharmaceutics, 12(5). doi:10.3390/pharmaceutics12050448
- Fabbri, M., Ferreira, J. J., & Rascol, O. (2022). COMT Inhibitors in the Management of Parkinson's Disease. CNS Drugs, 36(3), 261-282. doi:10.1007/s40263-021-00888-9
- Fanshi, Z., Mei, L., Jinmei, T., Li, Z., Jun, Z., Changyin, Y., & Zucai, X. (2023). Levodopa-induced dyskinesia: interplay between the N-methyl-D-aspartic acid receptor and neuroinflammation . Frontiers in Immunology, 14, 1253273-1253273.
- Feng, W., Han, X., Hu, H., Chang, M., Ding, L., Xiang, H., Chen, Y., & Li, Y. (2021). 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat Commun, 12(1), 2203. doi:10.1038/s41467-021-22278-x
- Fox, S. H. (2013). Non-dopaminergic treatments for motor control in Parkinson's disease. Drugs, 73(13), 1405-1415. doi:10.1007/s40265-013-0105-4
- Fox, S. H., Katzenschlager, R., Lim, S. Y., Barton, B., de Bie, R. M. A., Seppi, K., Coelho, M., Sampaio, C., & Movement Disorder Society Evidence-Based Medicine, C. (2018). International Parkinson and movement disorder society evidence-based medicine review: Update on treatments for the motor symptoms of Parkinson's disease. Mov Disord, 33(8), 1248-1266. doi:10.1002/mds.27372
- Giuseppina, B., & Agnese, M. (2015). Liposomes as nanomedical devices. International journal of nanomedicine, 10(default), 975-999.
- Gonzalez-Latapi, P., Bhowmick, S. S., Saranza, G., & Fox, S. H. (2020). Non-Dopaminergic Treatments for Motor Control in Parkinson's Disease: An Update. CNS Drugs, 34(10), 1025-1044. doi:10.1007/s40263-020-00754-0
- Hanmei, L., Dan, Y., Wei, L., Qi, T., Liang, Z., & Qiang, P. (2020). Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy. Colloids and surfaces. B, Biointerfaces, 199, 111502-111502.
- Hao, C., Qu, A., Xu, L., Sun, M., Zhang, H., Xu, C., & Kuang, H. (2019). Chiral Molecule-mediated Porous Cu (x)O Nanoparticle Clusters with Antioxidation Activity for Ameliorating Parkinson's Disease. J Am Chem Soc, 141(2), 1091-1099. doi:10.1021/jacs.8b11856
- Jagaran, K., & Singh, M. (2022). Lipid Nanoparticles: Promising Treatment Approach for Parkinson's Disease. Int J Mol Sci, 23(16). doi:10.3390/ijms23169361
- Joshi, N., Basak, S., Kundu, S., De, G., Mukhopadhyay, A., & Chattopadhyay, K. (2015). Attenuation of the early events of alpha-synuclein aggregation: a fluorescence correlation spectroscopy and laser scanning microscopy study in the presence of surface-coated Fe3O4 nanoparticles. Langmuir, 31(4), 1469-1478. doi:10.1021/la503749e
- Junguang, W., Xuejing, C., Chun, K. P., Monika, M., Xiaoyu, W., Lin, B., & Chunying, C. (2021). Nanomaterials as novel agents for amelioration of Parkinson’s disease. Nano Today, 41.
- Kaushik, A. C., Bharadwaj, S., Kumar, S., & Wei, D.-Q. (2018). Nano-particle mediated inhibition of Parkinson’s disease using computational biology approach. Scientific Reports, 8(1), 1-8.
- Li, X., Huang, Z., Liao, Z., Liu, A., & Huo, S. (2023). Transformable nanodrugs for overcoming the biological barriers in the tumor environment during drug delivery. Nanoscale, 15(19), 8532-8547. doi:10.1039/d2nr06621a
- Liu, H., Han, Y., Wang, T., Zhang, H., Xu, Q., Yuan, J., & Li, Z. (2020). Targeting Microglia for Therapy of Parkinson's Disease by Using Biomimetic Ultrasmall Nanoparticles. J Am Chem Soc, 142(52), 21730-21742. doi:10.1021/jacs.0c09390
- Liu, Q., Zou, J., Chen, Z., He, W., & Wu, W. (2023). Current research trends of nanomedicines. Acta Pharm Sin B, 13(11), 4391-4416. doi:10.1016/j.apsb.2023.05.018
- Liu, Y., Luo, J., Liu, Y., Liu, W., Yu, G., Huang, Y., Yang, Y., Chen, X., & Chen, T. (2022). Brain-Targeted Biomimetic Nanodecoys with Neuroprotective Effects for Precise Therapy of Parkinson's Disease. ACS Cent Sci, 8(9), 1336-1349. doi:10.1021/acscentsci.2c00741
- Liwen, H., Xiao, Z., Zhaowen, D., Yilin, Q., Wenjing, W., Xihan, X., Hua, Y., Lihuan, B., Heping, W., Leyan, F., Jing, R., Xue, Y., Guanghui, M., Wei, W., & Xue, X. (2022). PEGylated 2D-nanomaterials alleviate Parkinson's disease by shielding PIP2 lipids to inhibit IP3 second messenger signaling. Nano Today, 46.
- Ma, Y., Yu, N., Lu, H., Shi, J., Zhang, Y., Chen, Z., & Jia, G. (2023). Titanium dioxide nanoparticles: revealing the mechanisms underlying hepatotoxicity and effects in the gut microbiota. Arch Toxicol, 97(8), 2051-2067. doi:10.1007/s00204-023-03536-x
- Medical Research Council Laboratory of Molecular Biology, F. C. A., Cambridge CB2 0QH, UK., & Department of Clinical Neurosciences, U. o. C., Hills Road, Cambridge CB2 2QH, UK. (2018). Parkinson's disease - the story of an eponym. Nature reviews. Neurology, 14(1), 57-62.
- Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov, 20(2), 101-124. doi:10.1038/s41573-020-0090-8
- Monge-Fuentes, V., Biolchi Mayer, A., Lima, M. R., Geraldes, L. R., Zanotto, L. N., Moreira, K. G., Martins, O. P., Piva, H. L., Felipe, M. S. S., Amaral, A. C., Bocca, A. L., Tedesco, A. C., & Mortari, M. R. (2021). Dopamine-loaded nanoparticle systems circumvent the blood-brain barrier restoring motor function in mouse model for Parkinson's Disease. Sci Rep, 11(1), 15185. doi:10.1038/s41598-021-94175-8
- Naz, F., Rahul, Fatima, M., Naseem, S., Khan, W., Mondal, A. C., & Siddique, Y. H. (2020). Ropinirole silver nanocomposite attenuates neurodegeneration in the transgenic Drosophila melanogaster model of Parkinson's disease. Neuropharmacology, 177, 108216. doi:10.1016/j.neuropharm.2020.108216
- Nguyen-Thi, P. T., Nguyen, T. T., Phan, H. L., Ho, T. T., Vo, T. V., & Vo, G. V. (2023). Cell membrane-based nanomaterials for therapeutics of neurodegenerative diseases. Neurochem Int, 170, 105612. doi:10.1016/j.neuint.2023.105612
- Peter J. Gawne, M. F., Marisa Papaluca, Jan Grimm, Paolo Decuzzi. (2023). New opportunities and old challenges in the clinical translation of nanotheranostics. Nature reviews materials.
- Poewe, W., Antonini, A., Zijlmans, J. C., Burkhard, P. R., & Vingerhoets, F. (2010). Levodopa in the treatment of Parkinson's disease: an old drug still going strong. Clin Interv Aging, 5, 229-238. doi:10.2147/cia.s6456
- Ren, Y., Zhao, X., Liang, X., Ma, P. X., & Guo, B. (2017). Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease. International Journal of Biological Macromolecules, 105(P1), 1079-1087.
- Rezazadeh Yazd, S. A., Gashtil, S., Moradpoor, M., Pishdar, S., Nabian, P., Kazemi, Z., & Naeim, M. (2023). Reducing depression and anxiety symptoms in patients with Parkinson's disease: The effectiveness of group cognitive behavioral therapy. Parkinsonism Relat Disord, 112, 105456. doi:10.1016/j.parkreldis.2023.105456
- Ruotolo, R., De Giorgio, G., Minato, I., Bianchi, M. G., Bussolati, O., & Marmiroli, N. (2020). Cerium Oxide Nanoparticles Rescue alpha-Synuclein-Induced Toxicity in a Yeast Model of Parkinson's Disease. Nanomaterials (Basel), 10(2). doi:10.3390/nano10020235
- Sardoiwala, M. N., Srivastava, A. K., Kaundal, B., Karmakar, S., & Choudhury, S. R. (2020). Recuperative effect of metformin loaded polydopamine nanoformulation promoting EZH2 mediated proteasomal degradation of phospho-alpha-synuclein in Parkinson's disease model. Nanomedicine, 24, 102088. doi:10.1016/j.nano.2019.102088
- Shen, X., Pan, D., Gong, Q., Gu, Z., & Luo, K. (2024). Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives. Bioact Mater, 32, 445-472. doi:10.1016/j.bioactmat.2023.10.017
- Singh, N., Savanur, M. A., Srivastava, S., D'Silva, P., & Mugesh, G. (2017). A Redox Modulatory Mn(3) O(4) Nanozyme with Multi-Enzyme Activity Provides Efficient Cytoprotection to Human Cells in a Parkinson's Disease Model. Angew Chem Int Ed Engl, 56(45), 14267-14271. doi:10.1002/anie.201708573
- Singh, S., Sharma, K., & Sharma, H. (2024). Green Extracts with Metal-based Nanoparticles for Treating Inflammatory Diseases: A Review. Curr Drug Deliv, 21(4), 544-570. doi:10.2174/1567201820666230602164325
- Sisubalan, N., Shalini, R., Ramya, S., Sivamaruthi, B. S., & Chaiyasut, C. (2023). Recent advances in nanomaterials for neural applications: opportunities and challenges. Nanomedicine (Lond). doi:10.2217/nnm-2023-0261
- Srivastava, A. K., Roy Choudhury, S., & Karmakar, S. (2020). Melatonin/polydopamine nanostructures for collective neuroprotection-based Parkinson's disease therapy. Biomater Sci, 8(5), 1345-1363. doi:10.1039/c9bm01602c
- Strauss, I., Kalia, S. K., & Lozano, A. M. (2014). Where are we with surgical therapies for Parkinson's disease? Parkinsonism and Related Disorders, 20, S187-S191.
- Urits, I., Swanson, D., Swett, M. C., Patel, A., Berardino, K., Amgalan, A., Berger, A. A., Kassem, H., Kaye, A. D., & Viswanath, O. (2020). A Review of Patisiran (ONPATTRO(R)) for the Treatment of Polyneuropathy in People with Hereditary Transthyretin Amyloidosis. Neurol Ther, 9(2), 301-315. doi:10.1007/s40120-020-00208-1
- Weber, D. O. (1999). Nanomedicine. Health Forum J, 42(4), 32, 36-37.
- WHO. (9 August 2023). Parkinson disease. Retrieved from https://www.who.int/news-room/fact-sheets/detail/parkinson-disease
- Xiang, Y., Wu, Q., Liang, L., Wang, X., Wang, J., Zhang, X., Pu, X., & Zhang, Q. (2012). Chlorotoxin-modified stealth liposomes encapsulating levodopa for the targeting delivery against Parkinson's disease in the MPTP-induced mice model. J Drug Target, 20(1), 67-75. doi:10.3109/1061186X.2011.595490
- Xiong, S., Li, Z., Liu, Y., Wang, Q., Luo, J., Chen, X., Xie, Z., Zhang, Y., Zhang, H., & Chen, T. (2020). Brain-targeted delivery shuttled by black phosphorus nanostructure to treat Parkinson's disease. Biomaterials, 260, 120339. doi:10.1016/j.biomaterials.2020.120339
- Ye, H., Robak, L. A., Yu, M., Cykowski, M., & Shulman, J. M. (2023). Genetics and Pathogenesis of Parkinson's Syndrome. Annu Rev Pathol, 18, 95-121. doi:10.1146/annurev-pathmechdis-031521-034145
- Yu-Qing, L., Yuanyang, M., Enquan, X., Huimin, J., Shu, Z., L., D. V., M., D. T., Yan-Mei, L., Zhi, Z., Weiwei, H., & Xiaobo, M. (2021). Nanozyme scavenging ROS for prevention of pathologic α-synuclein transmission in Parkinson’s disease. Nano Today, 36, 101027-.
- Zuné, J. v. R., Shameemah, A., Soraya, B., & Colin, K. (2021). Toxic Feedback Loop Involving Iron, Reactive Oxygen Species, α-Synuclein and Neuromelanin in Parkinson's Disease and Intervention with Turmeric. Molecular neurobiology, 58(11), 1-17.
How to Cite
How to Cite
Downloads
Article Details
Most Read This Month
License
Copyright (c) 2024 Qi Xu, Jiawei Liu, Haiyan Liua
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.