Skip to main content Skip to main navigation menu Skip to site footer

Roles of microglial calcium channels in neurodegenerative diseases

  • Shasha Wang
  • Jinyu Zhang
  • Jingdan Zhang
  • Ao li
  • Zengqiang Yuan
  • Jinbo Cheng

Abstract

Microglia are crucial for neurodevelopment, and the maintenance of central nervous system functions. Calcium signals in microglia regulate the neuronal plasticity critical for learning, memory, and neuron survival. Growing evidence highlights the pivotal function of calcium channels in microglia, along with their cognate proteins, in modulating oxidative stress, neuroinflammation, and multiple neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. In this review, we summarized the important role and regulatory mechanism of these critical calcium channels and their associated proteins, highlighting their potential as novel therapeutic targets for neurodegenerative diseases.

Section

References

  1. Ginhoux, F. & Prinz, M. Origin of microglia: current concepts and past controversies. Cold Spring Harb Perspect Biol 7, a020537, doi:10.1101/cshperspect.a020537 (2015).
  2. Korin, B. et al. High-dimensional, single-cell characterization of the brain's immune compartment. Nat Neurosci 20, 1300-1309, doi:10.1038/nn.4610 (2017).
  3. Liu, Y. U. et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat Neurosci 22, 1771-1781, doi:10.1038/s41593-019-0511-3 (2019).
  4. Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596-1609, doi:10.1016/j.cell.2013.11.030 (2013).
  5. Hoffmann, A., Kann, O., Ohlemeyer, C., Hanisch, U. K. & Kettenmann, H. Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J Neurosci 23, 4410-4419, doi:10.1523/jneurosci.23-11-04410.2003 (2003).
  6. Chen, Y. & Colonna, M. Microglia in Alzheimer's disease at single-cell level. Are there common patterns in humans and mice? J Exp Med 218, doi:10.1084/jem.20202717 (2021).
  7. Keren-Shaul, H. et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease. Cell 169, 1276-1290.e1217, doi:10.1016/j.cell.2017.05.018 (2017).
  8. Yu, T. & Weidong, L. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Molecular neurobiology 53 (2016).
  9. Franco, R. & Fernández-Suárez, D. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 131, 65-86, doi:10.1016/j.pneurobio.2015.05.003 (2015).
  10. Olson, K. E. & Gendelman, H. E. Immunomodulation as a neuroprotective and therapeutic strategy for Parkinson's disease. Curr Opin Pharmacol 26, 87-95, doi:10.1016/j.coph.2015.10.006 (2016).
  11. Yao, K. & Zu, H. B. Microglial polarization: novel therapeutic mechanism against Alzheimer's disease. Inflammopharmacology 28, 95-110, doi:10.1007/s10787-019-00613-5 (2020).
  12. Mizoguchi, Y. & Monji, A. Microglial Intracellular Ca(2+) Signaling in Synaptic Development and its Alterations in Neurodevelopmental Disorders. Front Cell Neurosci 11, 69, doi:10.3389/fncel.2017.00069 (2017).
  13. Sharma, P. & Ping, L. Calcium ion influx in microglial cells: physiological and therapeutic significance. J Neurosci Res 92, 409-423, doi:10.1002/jnr.23344 (2014).
  14. Suzuki, Y., Inoue, T. & Ra, C. L-type Ca2+ channels: a new player in the regulation of Ca2+ signaling, cell activation and cell survival in immune cells. Mol Immunol 47, 640-648, doi:10.1016/j.molimm.2009.10.013 (2010).
  15. Luo, L. et al. Ion channels and transporters in microglial function in physiology and brain diseases. Neurochem Int 142, 104925, doi:10.1016/j.neuint.2020.104925 (2021).
  16. Toescu, E. C. & Verkhratsky, A. Role of calcium in normal aging and neurodegeneration. Aging Cell 6, 265, doi:10.1111/j.1474-9726.2007.00299.x (2007).
  17. Wang, J., Hu, W. W., Jiang, Z. & Feng, M. J. Advances in treatment of neurodegenerative diseases: Perspectives for combination of stem cells with neurotrophic factors. World J Stem Cells 12, 323-338, doi:10.4252/wjsc.v12.i5.323 (2020).
  18. Swart, T. & Hurley, M. J. Calcium Channel Antagonists as Disease-Modifying Therapy for Parkinson's Disease: Therapeutic Rationale and Current Status. CNS Drugs 30, 1127-1135, doi:10.1007/s40263-016-0393-9 (2016).
  19. Niraula, A., Sheridan, J. F. & Godbout, J. P. Microglia Priming with Aging and Stress. Neuropsychopharmacology 42, 318-333, doi:10.1038/npp.2016.185 (2017).
  20. Nathan, C. & Ding, A. Nonresolving inflammation. Cell 140, 871-882, doi:10.1016/j.cell.2010.02.029 (2010).
  21. Goldberg, J. et al. Targeting of intracellular Ca(2+) stores as a therapeutic strategy against age-related neurotoxicities. NPJ Aging Mech Dis 6, 10, doi:10.1038/s41514-020-00048-1 (2020).
  22. Zündorf, G. & Reiser, G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal 14, 1275-1288, doi:10.1089/ars.2010.3359 (2011).
  23. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4, 517-529, doi:10.1038/nrm1155 (2003).
  24. Carafoli, E. & Krebs, J. Why Calcium? How Calcium Became the Best Communicator. J Biol Chem 291, 20849-20857, doi:10.1074/jbc.R116.735894 (2016).
  25. Clapham, D. E. Calcium signaling. Cell 131, 1047-1058, doi:10.1016/j.cell.2007.11.028 (2007).
  26. Bagur, R. & Hajnoczky, G. Intracellular Ca(2+) Sensing: Its Role in Calcium Homeostasis and Signaling. Molecular cell 66, 780-788, doi:10.1016/j.molcel.2017.05.028 (2017).
  27. Färber, K. & Kettenmann, H. Functional role of calcium signals for microglial function. Glia 54, 656-665, doi:10.1002/glia.20412 (2006).
  28. Gehrmann, J., Matsumoto, Y. & Kreutzberg, G. W. Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20, 269-287, doi:10.1016/0165-0173(94)00015-h (1995).
  29. Pan, K. & Garaschuk, O. The role of intracellular calcium-store-mediated calcium signals in in vivo sensor and effector functions of microglia. J Physiol, doi:10.1113/jp279521 (2022).
  30. Olmedillas Del Moral, M., Asavapanumas, N., Uzcátegui, N. L. & Garaschuk, O. Healthy Brain Aging Modifies Microglial Calcium Signaling In Vivo. Int J Mol Sci 20, doi:10.3390/ijms20030589 (2019).
  31. Kettenmann, H., Hanisch, U. K., Noda, M. & Verkhratsky, A. Physiology of microglia. Physiol Rev 91, 461-553, doi:10.1152/physrev.00011.2010 (2011).
  32. Pchitskaya, E., Popugaeva, E. & Bezprozvanny, I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 70, 87-94, doi:10.1016/j.ceca.2017.06.008 (2018).
  33. Stephenson, J., Nutma, E., van der Valk, P. & Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology 154, 204-219, doi:10.1111/imm.12922 (2018).
  34. Iacopino, A. M. & Christakos, S. Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci U S A 87, 4078-4082, doi:10.1073/pnas.87.11.4078 (1990).
  35. Mattson, M. P., Rychlik, B., Chu, C. & Christakos, S. Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Neuron 6, 41-51, doi:10.1016/0896-6273(91)90120-o (1991).
  36. Mattson, M. P., Gleichmann, M. & Cheng, A. Mitochondria in neuroplasticity and neurological disorders. Neuron 60, 748-766, doi:10.1016/j.neuron.2008.10.010 (2008).
  37. Michaelis, M., Nieswandt, B., Stegner, D., Eilers, J. & Kraft, R. STIM1, STIM2, and Orai1 regulate store-operated calcium entry and purinergic activation of microglia. Glia 63, 652-663, doi:10.1002/glia.22775 (2015).
  38. Giladi, M., Shor, R., Lisnyansky, M. & Khananshvili, D. Structure-Functional Basis of Ion Transport in Sodium-Calcium Exchanger (NCX) Proteins. Int J Mol Sci 17, doi:10.3390/ijms17111949 (2016).
  39. Heo, D. K., Lim, H. M., Nam, J. H., Lee, M. G. & Kim, J. Y. Regulation of phagocytosis and cytokine secretion by store-operated calcium entry in primary isolated murine microglia. Cell Signal 27, 177-186, doi:10.1016/j.cellsig.2014.11.003 (2015).
  40. Lim, D. et al. Calcium signalling toolkits in astrocytes and spatio-temporal progression of Alzheimer's disease. Curr Alzheimer Res 13, 359-369, doi:10.2174/1567205013666151116130104 (2016).
  41. Zhang, E. & Liao, P. Brain transient receptor potential channels and stroke. J Neurosci Res 93, 11651183, doi:10.1002/jnr.23529 (2015).
  42. Nilius, B., Owsianik, G., Voets, T. & Peters, J. A. Transient receptor potential cation channels in disease. Physiol Rev 87, 165-217, doi:10.1152/physrev.00021.2006 (2007).
  43. Echeverry, S., Rodriguez, M. J. & Torres, Y. P. Transient Receptor Potential Channels in Microglia: Roles in Physiology and Disease. Neurotox Res 30, 467-478, doi:10.1007/s12640-016-9632-6 (2016).
  44. Shirakawa, H. & Kaneko, S. Physiological and Pathophysiological Roles of Transient Receptor Potential Channels in Microglia-Related CNS Inflammatory Diseases. Biol Pharm Bull 41, 1152-1157, doi:10.1248/bpb.b18-00319 (2018).
  45. Pedersen, S. F., Owsianik, G. & Nilius, B. TRP channels: an overview. Cell Calcium 38, 233-252, doi:10.1016/j.ceca.2005.06.028 (2005).
  46. Miyake, T., Shirakawa, H., Nakagawa, T. & Kaneko, S. Activation of mitochondrial transient receptor potential vanilloid 1 channel contributes to microglial migration. Glia 63, 1870-1882, doi:10.1002/glia.22854 (2015).
  47. Catterall, W. A., Perez-Reyes, E., Snutch, T. P. & Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57, 411-425, doi:10.1124/pr.57.4.5 (2005).
  48. Ertel, E. A. et al. Nomenclature of voltage-gated calcium channels. Neuron 25, 533-535, doi:10.1016/s0896-6273(00)81057-0 (2000).
  49. Tanabe, T., Beam, K. G., Adams, B. A., Niidome, T. & Numa, S. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 346, 567-569, doi:10.1038/346567a0 (1990).
  50. Tanabe, T., Beam, K. G., Powell, J. A. & Numa, S. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336, 134-139, doi:10.1038/336134a0 (1988).
  51. Tanabe, T., Mikami, A., Numa, S. & Beam, K. G. Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Nature 344, 451-453, doi:10.1038/344451a0 (1990).
  52. Tanabe, T. et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328, 313-318, doi:10.1038/328313a0 (1987).
  53. Wang, X., Saegusa, H., Huntula, S. & Tanabe, T. Blockade of microglial Cav1.2 Ca(2+) channel exacerbates the symptoms in a Parkinson's disease model. Sci Rep 9, 9138, doi:10.1038/s41598-019-45681-3 (2019).
  54. Nanou, E. & Catterall, W. A. Calcium Channels, Synaptic Plasticity, and Neuropsychiatric Disease. Neuron 98, 466-481, doi:10.1016/j.neuron.2018.03.017 (2018).
  55. Liss, B. & Striessnig, J. The Potential of L-Type Calcium Channels as a Drug Target for Neuroprotective Therapy in Parkinson's Disease. Annu Rev Pharmacol Toxicol 59, 263-289, doi:10.1146/annurev-pharmtox-010818-021214 (2019).
  56. Guzman, J. N. et al. Systemic isradipine treatment diminishes calcium-dependent mitochondrial oxidant stress. J Clin Invest 128, 2266-2280, doi:10.1172/jci95898 (2018).
  57. Catterall, W. A. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3, a003947, doi:10.1101/cshperspect.a003947 (2011).
  58. Neumaier, F., Dibué-Adjei, M., Hescheler, J. & Schneider, T. Voltage-gated calcium channels: Determinants of channel function and modulation by inorganic cations. Prog Neurobiol 129, 1-36, doi:10.1016/j.pneurobio.2014.12.003 (2015).
  59. Dreses-Werringloer, U. et al. A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer's disease risk. Cell 133, 1149-1161, doi:10.1016/j.cell.2008.05.048 (2008).
  60. Lambert, J. C. et al. The CALHM1 P86L polymorphism is a genetic modifier of age at onset in Alzheimer's disease: a meta-analysis study. J Alzheimers Dis 22, 247-255, doi:10.3233/jad-2010-100933 (2010).
  61. Taruno, A. et al. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 495, 223-226, doi:10.1038/nature11906 (2013).
  62. Ma, Z. et al. Calcium homeostasis modulator 1 (CALHM1) is the pore-forming subunit of an ion channel that mediates extracellular Ca2+ regulation of neuronal excitability. Proc Natl Acad Sci U S A 109, E1963-1971, doi:10.1073/pnas.1204023109 (2012).
  63. Wu, J. et al. Generation of Calhm1 knockout mouse and characterization of calhm1 gene expression. Protein Cell 3, 470-480, doi:10.1007/s13238-012-2932-6 (2012).
  64. Ma, Z. et al. CALHM3 Is Essential for Rapid Ion Channel-Mediated Purinergic Neurotransmission of GPCR-Mediated Tastes. Neuron 98, 547-561.e510, doi:10.1016/j.neuron.2018.03.043 (2018).
  65. Choi, W., Clemente, N., Sun, W., Du, J. & Lü, W. The structures and gating mechanism of human calcium homeostasis modulator 2. Nature 576, 163-167, doi:10.1038/s41586-019-1781-3 (2019).
  66. Syrjanen, J. L. et al. Structure and assembly of calcium homeostasis modulator proteins. Nat Struct Mol Biol 27, 150-159, doi:10.1038/s41594-019-0369-9 (2020).
  67. Ma, J. et al. Calhm2 governs astrocytic ATP releasing in the development of depression-like behaviors. Mol Psychiatry 23, 883-891, doi:10.1038/mp.2017.229 (2018).
  68. Montilla, A., Mata, G. P., Matute, C. & Domercq, M. Contribution of P2X4 Receptors to CNS Function and Pathophysiology. Int J Mol Sci 21, doi:10.3390/ijms21155562 (2020).
  69. Färber, K. & Kettenmann, H. Purinergic signaling and microglia. Pflugers Arch 452, 615-621, doi:10.1007/s00424-006-0064-7 (2006).
  70. Rassendren, F. & Audinat, E. Purinergic signaling in epilepsy. J Neurosci Res 94, 781-793, doi:10.1002/jnr.23770 (2016).
  71. He, Y., Taylor, N., Fourgeaud, L. & Bhattacharya, A. The role of microglial P2X7: modulation of cell death and cytokine release. J Neuroinflammation 14, 135, doi:10.1186/s12974-017-0904-8 (2017).
  72. Bhattacharya, A. & Biber, K. The microglial ATP-gated ion channel P2X7 as a CNS drug target. Glia 64, 1772-1787, doi:10.1002/glia.23001 (2016).
  73. Jankowsky, J. L. et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13, 159-170, doi:10.1093/hmg/ddh019 (2004).
  74. Monif, M., Burnstock, G. & Williams, D. A. Microglia: proliferation and activation driven by the P2X7 receptor. Int J Biochem Cell Biol 42, 1753-1756, doi:10.1016/j.biocel.2010.06.021 (2010).
  75. Breitwieser, G. E. Extracellular calcium as an integrator of tissue function. Int J Biochem Cell Biol 40, 1467-1480, doi:10.1016/j.biocel.2008.01.019 (2008).
  76. Takuma, K., Ago, Y. & Matsuda, T. The glial sodium-calcium exchanger: a new target for nitric oxide-mediated cellular toxicity. Curr Protein Pept Sci 14, 43-50, doi:10.2174/1389203711314010007 (2013).
  77. Tóth, N. et al. The reverse mode of the Na(+)/Ca(2+) exchanger contributes to the pacemaker mechanism in rabbit sinus node cells. Sci Rep 12, 21830, doi:10.1038/s41598-022-25574-8 (2022).
  78. 2012 Alzheimer's disease facts and figures. Alzheimers Dement 8, 131-168, doi:10.1016/j.jalz.2012.02.001 (2012).
  79. Tiraboschi, P., Hansen, L. A., Thal, L. J. & Corey-Bloom, J. The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 62, 1984-1989, doi:10.1212/01.wnl.0000129697.01779.0a (2004).
  80. Calcium Hypothesis of Alzheimer's disease and brain aging: A framework for integrating new evidence into a comprehensive theory of pathogenesis. Alzheimers Dement 13, 178-182.e117, doi:10.1016/j.jalz.2016.12.006 (2017).
  81. Khachaturian, Z. S. Calcium, membranes, aging, and Alzheimer's disease. Introduction and overview. Ann N Y Acad Sci 568, 1-4, doi:10.1111/j.1749-6632.1989.tb12485.x (1989).
  82. Cummings, J. L., Tong, G. & Ballard, C. Treatment Combinations for Alzheimer's Disease: Current and Future Pharmacotherapy Options. J Alzheimers Dis 67, 779-794, doi:10.3233/jad-180766 (2019).
  83. McLarnon, J. G., Choi, H. B., Lue, L. F., Walker, D. G. & Kim, S. U. Perturbations in calcium-mediated signal transduction in microglia from Alzheimer's disease patients. J Neurosci Res 81, 426-435, doi:10.1002/jnr.20487 (2005).
  84. Anekonda, T. S. et al. L-type voltage-gated calcium channel blockade with isradipine as a therapeutic strategy for Alzheimer's disease. Neurobiol Dis 41, 62-70, doi:10.1016/j.nbd.2010.08.020 (2011).
  85. Goodison, W. V., Frisardi, V. & Kehoe, P. G. Calcium channel blockers and Alzheimer's disease: potential relevance in treatment strategies of metabolic syndrome. J Alzheimers Dis 30 Suppl 2, S269-282, doi:10.3233/jad-2012-111664 (2012).
  86. Moreno-Ortega, A. J. et al. CALHM1 and its polymorphism P86L differentially control Ca²⁺homeostasis, mitogen-activated protein kinase signaling, and cell vulnerability upon exposure to amyloid β. Aging Cell 14, 1094-1102, doi:10.1111/acel.12403 (2015).
  87. Cheng, J. et al. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer's disease pathology. Sci Adv 7, doi:10.1126/sciadv.abe3600 (2021).
  88. Piccialli, I. et al. The Na(+)/Ca(2+) Exchanger 3 Is Functionally Coupled With the Na(V)1.6 Voltage-Gated Channel and Promotes an Endoplasmic Reticulum Ca(2+) Refilling in a Transgenic Model of Alzheimer's Disease. Front Pharmacol 12, 775271, doi:10.3389/fphar.2021.775271 (2021).
  89. Martin, E. et al. New role of P2X7 receptor in an Alzheimer's disease mouse model. Mol Psychiatry 24, 108-125, doi:10.1038/s41380-018-0108-3 (2019).
  90. McLarnon, J. G., Ryu, J. K., Walker, D. G. & Choi, H. B. Upregulated expression of purinergic P2X(7) receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus. J Neuropathol Exp Neurol 65, 1090-1097, doi:10.1097/01.jnen.0000240470.97295.d3 (2006).
  91. Ronning, K. E. et al. The P2X7 Receptor, a Multifaceted Receptor in Alzheimer's Disease. Int J Mol Sci 24, doi:10.3390/ijms241411747 (2023).
  92. Sanz, J. M. et al. Activation of microglia by amyloid {beta} requires P2X7 receptor expression. J Immunol 182, 4378-4385, doi:10.4049/jimmunol.0803612 (2009).
  93. Heneka, M. T., McManus, R. M. & Latz, E. Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci 19, 610-621, doi:10.1038/s41583-018-0055-7 (2018).
  94. Martínez-Frailes, C. et al. Amyloid Peptide Induced Neuroinflammation Increases the P2X7 Receptor Expression in Microglial Cells, Impacting on Its Functionality. Front Cell Neurosci 13, 143, doi:10.3389/fncel.2019.00143 (2019).
  95. Chen, X. et al. Brilliant Blue G improves cognition in an animal model of Alzheimer's disease and inhibits amyloid-β-induced loss of filopodia and dendrite spines in hippocampal neurons. Neuroscience 279, 94-101, doi:10.1016/j.neuroscience.2014.08.036 (2014).
  96. Xu, J. et al. P2X4 Receptor Reporter Mice: Sparse Brain Expression and Feeding-Related Presynaptic Facilitation in the Arcuate Nucleus. J Neurosci 36, 8902-8920, doi:10.1523/jneurosci.1496-16.2016 (2016).
  97. Ulmann, L. et al. Involvement of P2X4 receptors in hippocampal microglial activation after status epilepticus. Glia 61, 1306-1319, doi:10.1002/glia.22516 (2013).
  98. Hua, J. et al. Microglial P2X4 receptors promote ApoE degradation and contribute to memory deficits in Alzheimer's disease. Cell Mol Life Sci 80, 138, doi:10.1007/s00018-023-04784-x (2023).
  99. de Lau, L. M. & Breteler, M. M. Epidemiology of Parkinson's disease. Lancet Neurol 5, 525-535, doi:10.1016/s1474-4422(06)70471-9 (2006).
  100. Moore, D. J., West, A. B., Dawson, V. L. & Dawson, T. M. Molecular pathophysiology of Parkinson's disease. Annu Rev Neurosci 28, 57-87, doi:10.1146/annurev.neuro.28.061604.135718 (2005).
  101. Pistacchi, M. et al. Gait analysis and clinical correlations in early Parkinson's disease. Funct Neurol 32, 28-34, doi:10.11138/fneur/2017.32.1.028 (2017).
  102. Cerri, S., Mus, L. & Blandini, F. Parkinson's Disease in Women and Men: What's the Difference? J Parkinsons Dis 9, 501-515, doi:10.3233/jpd-191683 (2019).
  103. Pajares, M., A, I. R., Manda, G., Boscá, L. & Cuadrado, A. Inflammation in Parkinson's Disease: Mechanisms and Therapeutic Implications. Cells 9, doi:10.3390/cells9071687 (2020).
  104. Tansey, M. G. et al. Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol 22, 657-673, doi:10.1038/s41577-022-00684-6 (2022).
  105. Kwon, H. S. & Koh, S. H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 9, 42, doi:10.1186/s40035-020-00221-2 (2020).
  106. Post, M. R., Lieberman, O. J. & Mosharov, E. V. Can Interactions Between α-Synuclein, Dopamine and Calcium Explain Selective Neurodegeneration in Parkinson's Disease? Front Neurosci 12, 161, doi:10.3389/fnins.2018.00161 (2018).
  107. Bo, X. et al. Deletion of Calhm2 alleviates MPTP-induced Parkinson's disease pathology by inhibiting EFHD2-STAT3 signaling in microglia. Theranostics 13, 1809-1822, doi:10.7150/thno.83082 (2023).
  108. Lin, Y., McDonough, S. I. & Lipscombe, D. Alternative splicing in the voltage-sensing region of N-Type CaV2.2 channels modulates channel kinetics. J Neurophysiol 92, 2820-2830, doi:10.1152/jn.00048.2004 (2004).
  109. Huntula, S., Saegusa, H., Wang, X., Zong, S. & Tanabe, T. Involvement of N-type Ca(2+) channel in microglial activation and its implications to aging-induced exaggerated cytokine response. Cell Calcium 82, 102059, doi:10.1016/j.ceca.2019.102059 (2019).
  110. Madry, C. et al. Microglial Ramification, Surveillance, and Interleukin-1β Release Are Regulated by the Two-Pore Domain K(+) Channel THIK-1. Neuron 97, 299-312.e296, doi:10.1016/j.neuron.2017.12.002 (2018).
  111. Roux, B. Ion channels and ion selectivity. Essays Biochem 61, 201-209, doi:10.1042/ebc20160074 (2017).
  112. Saegusa, H., Li, X., Wang, X., Kayakiri, M. & Tanabe, T. Knockdown of microglial Cav2.2 N-type voltage-dependent Ca(2+) channel ameliorates behavioral deficits in a mouse model of Parkinson's disease. FEBS Lett 594, 2914-2922, doi:10.1002/1873-3468.13853 (2020).
  113. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816-824, doi:10.1038/39807 (1997).
  114. Farfariello, V., Amantini, C. & Santoni, G. Transient receptor potential vanilloid 1 activation induces autophagy in thymocytes through ROS-regulated AMPK and Atg4C pathways. J Leukoc Biol 92, 421-431, doi:10.1189/jlb.0312123 (2012).
  115. Yuan, J. et al. Controlled Activation of TRPV1 Channels on Microglia to Boost Their Autophagy for Clearance of Alpha-Synuclein and Enhance Therapy of Parkinson's Disease. Adv Mater 34, e2108435, doi:10.1002/adma.202108435 (2022).
  116. Athauda, D. & Foltynie, T. The ongoing pursuit of neuroprotective therapies in Parkinson disease. Nat Rev Neurol 11, 25-40, doi:10.1038/nrneurol.2014.226 (2015).
  117. Schrank, S., Barrington, N. & Stutzmann, G. E. Calcium-Handling Defects and Neurodegenerative Disease. Cold Spring Harb Perspect Biol 12, doi:10.1101/cshperspect.a035212 (2020).
  118. Fleckenstein, A. History of calcium antagonists. Circ Res 52, I3-16 (1983).
  119. McDonough, S. I. Gating modifier toxins of voltage-gated calcium channels. Toxicon 49, 202-212, doi:10.1016/j.toxicon.2006.09.018 (2007).
  120. Michelucci, A., Heurtaux, T., Grandbarbe, L., Morga, E. & Heuschling, P. Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol 210, 3-12, doi:10.1016/j.jneuroim.2009.02.003 (2009).
  121. Koizumi, S. et al. Spatial and temporal aspects of Ca2+ signaling mediated by P2Y receptors in cultured rat hippocampal astrocytes. Life Sci 72, 431-442, doi:10.1016/s0024-3205(02)02273-7 (2002).
  122. Komagiri, Y., Nakamura, K. & Kubokawa, M. A nicardipine-sensitive Ca2+ entry contributes to the hypotonicity-induced increase in [Ca2+]i of principal cells in rat cortical collecting duct. Cell Calcium 49, 35-42, doi:10.1016/j.ceca.2010.11.006 (2011).
  123. Huang, B. R. et al. Anti-neuroinflammatory effects of the calcium channel blocker nicardipine on microglial cells: implications for neuroprotection. PLoS One 9, e91167, doi:10.1371/journal.pone.0091167 (2014).
  124. Park, J. H. et al. Lomerizine inhibits LPS-mediated neuroinflammation and tau hyperphosphorylation by modulating NLRP3, DYRK1A, and GSK3α/β. Front Immunol 14, 1150940, doi:10.3389/fimmu.2023.1150940 (2023).
  125. Dong, Y. & Tang, L. Microglial Calcium Homeostasis Modulator 2: Novel Anti-neuroinflammation Target for the Treatment of Neurodegenerative Diseases. Neurosci Bull, doi:10.1007/s12264-023-01153-3 (2023).

How to Cite

“Roles of Microglial Calcium Channels in Neurodegenerative Diseases”. Human Brain, vol. 3, no. 1, Apr. 2024, https://doi.org/10.37819/hb.1.1806.

How to Cite

“Roles of Microglial Calcium Channels in Neurodegenerative Diseases”. Human Brain, vol. 3, no. 1, Apr. 2024, https://doi.org/10.37819/hb.1.1806.

HTML
165

Total
86

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2024 Shasha Wang, Jinyu Zhang, Jingdan Zhang, Ao li, Zengqiang Yuan, Jinbo Cheng

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.