Skip to main content Skip to main navigation menu Skip to site footer

Exploring Links between Pineal Gland Calcification and Central Nervous System Disease

  • Xinnan Liu
  • Haotian Liu


Central nervous system disease is globally common with dysfunction of the brain and spinal cord, which significantly affects the quality of life, such as sleep disturbances. Pineal gland is pivotal in regulating sleep cycles and circadian rhythms. And melatonin, secreted by pineal gland, promotes neurodevelopment and maintains neurohomeostasis, which is also pivotal in the modulation of central nervous system disorders. In recent years, studies have found that patients with central nervous system damage often have degeneration of the pineal gland, characterized by a decrease in pineal gland volume, reduced melatonin secretion, and even parenchymal calcification. An increasing number of Alzheimer's disease patients have been observed to exhibit pineal gland calcification. Research suggests that sleep disturbances accompanying central nervous system disorders can be attributed to the degeneration of pineal gland function, indicating a potential contribution of gland calcification to central nervous system diseases. Here, we review the recent research on pineal gland calculi and discuss the potential relationship between pineal gland calcification and various central nervous system diseases, contributing to a deeper understanding of the intricate mechanisms underlying neurological disorders.



  1. Adams, L. C., Boker, S. M., Bender, Y. Y., Diederichs, G., Fallenberg, E. M., Wagner, M., . . . Makowski, M. R. (2017). Diagnostic accuracy of susceptibility-weighted magnetic resonance imaging for the evaluation of pineal gland calcification. PLoS One, 12(3), e0172764. Retrieved from doi:10.1371/journal.pone.0172764
  2. Al Hajri, F., Sirasanagandla, S. R., Boudaka, A., Al Dhuhli, H., & Al Ajmi, E. (2023). Physiological Intracranial Calcifications in Children: A computed tomography-based study. Sultan Qaboos Univ Med J, 23(2), 227-232. Retrieved from doi:10.18295/squmj.9.2022.058
  3. Alghamdi, B. S. (2018). The neuroprotective role of melatonin in neurological disorders. J Neurosci Res, 96(7), 1136-1149. doi:10.1002/jnr.24220
  4. Baconnier, S., Lang, S. B., Polomska, M., Hilczer, B., Berkovic, G., & Meshulam, G. (2002). Calcite microcrystals in the pineal gland of the human brain: first physical and chemical studies. Bioelectromagnetics, 23(7), 488-495. Retrieved from doi:10.1002/bem.10053
  5. Belay, D. G., & Worku, M. G. (2023). Prevalence of pineal gland calcification: systematic review and meta-analysis. Syst Rev, 12(1), 32. Retrieved from doi:10.1186/s13643-023-02205-5
  6. Breen, D. P., Vuono, R., Nawarathna, U., Fisher, K., Shneerson, J. M., Reddy, A. B., & Barker, R. A. (2014). Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol, 71(5), 589-595. Retrieved from doi:10.1001/jamaneurol.2014.65
  7. Bukreeva, I., Junemann, O., Cedola, A., Brun, F., Longo, E., Tromba, G., . . . Asadchikov, V. E. (2023). Micromorphology of pineal gland calcification in age-related neurodegenerative diseases. Med Phys, 50(3), 1601-1613. Retrieved from doi:10.1002/mp.16080
  8. Chen, W. R., Zhou, Y. J., Sha, Y., Wu, X. P., Yang, J. Q., & Liu, F. (2020). Melatonin attenuates vascular calcification by inhibiting mitochondria fission via an AMPK/Drp1 signalling pathway. J Cell Mol Med, 24(11), 6043-6054. Retrieved from doi:10.1111/jcmm.15157
  9. Duan, C., Jenkins, Z. M., & Castle, D. (2021). Therapeutic use of melatonin in schizophrenia: A systematic review. World J Psychiatry, 11(8), 463-476. doi:10.5498/wjp.v11.i8.463
  10. Esposito, E., & Cuzzocrea, S. (2010). Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol, 8(3), 228-242. doi:10.2174/157015910792246155
  11. Gao, Y., Wei, S., Gao, F., Gao, L., Dang, L., Shang, S., . . . Qu, Q. (2020). Sleep Disturbance is Associated With Higher Plasma Aβ Levels in Cognitively Normal Adults-A Population-Based Cross-Sectional Study. Front Aging Neurosci, 12, 615838. doi:10.3389/fnagi.2020.615838
  12. Gheban, B. A., Colosi, H. A., Gheban-Rosca, I. A., Georgiu, C., Gheban, D., Crisan, D., & Crisan, M. (2023). Digital histological morphometry of the human pineal gland in a postmortem study, with endocrine and neurological clinical implications. Anat Histol Embryol, 52(1), 12-20. Retrieved from doi:10.1111/ahe.12828
  13. Gheban, B. A., Colosi, H. A., Gheban-Rosca, I. A., Pop, B., Domsa, A. T., Georgiu, C., . . . Crisan, M. (2021). Age-Related Changes of the Pineal Gland in Humans: A Digital Anatomo-Histological Morphometric Study on Autopsy Cases with Comparison to Predigital-Era Studies. Medicina (Kaunas), 57(4). Retrieved from doi:10.3390/medicina57040383
  14. Gheban, B. A., Rosca, I. A., & Crisan, M. (2019). The morphological and functional characteristics of the pineal gland. Med Pharm Rep, 92(3), 226-234. Retrieved from doi:10.15386/mpr-1235
  15. Ghorbani, A., Pishkar, L., Saravi, K. V., & Chen, M. (2023). Melatonin-mediated endogenous nitric oxide coordinately boosts stability through proline and nitrogen metabolism, antioxidant capacity, and Na(+)/K(+) transporters in tomato under NaCl stress. Front Plant Sci, 14, 1135943. Retrieved from doi:10.3389/fpls.2023.1135943
  16. Ghorbanlou, M., Moradi, F., & Mehdizadeh, M. (2022). Frequency, shape, and estimated volume of intracranial physiologic calcification in different age groups investigated by brain computed tomography scan: a retrospective study. Anat Cell Biol, 55(1), 63-71. Retrieved from doi:10.5115/acb.21.137
  17. Gorgulu, F. F., & Koc, A. S. (2021). Is there any relationship between autism and pineal gland volume? Pol J Radiol, 86, e225-e231. Retrieved from doi:10.5114/pjr.2021.105689
  18. Guerrero, J. M., & Reiter, R. J. (2002). Melatonin-immune system relationships. Curr Top Med Chem, 2(2), 167-179. doi:10.2174/1568026023394335
  19. Harisha, K., Arava, S., Singh, S., & Pariplavi, M. (2023). A morphological study of human pineal gland in post-mortem cases. Morphologie, 107(357), 193-198. Retrieved from doi:10.1016/j.morpho.2022.06.095
  20. Howes, O. D., & Murray, R. M. (2014). Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet, 383(9929), 1677-1687. Retrieved from doi:10.1016/S0140-6736(13)62036-X
  21. Jalali, N., Firouzabadi, M. D., Mirshekar, A., Khalili, P., Ravangard, A. R., Ahmadi, J., . . . Jalali, Z. (2023). Cross-sectional analysis of potential risk factors of the pineal gland calcification. BMC Endocr Disord, 23(1), 49. Retrieved from doi:10.1186/s12902-023-01301-w
  22. Junemann, O., Bukreeva, I., Otlyga, D. A., Cedola, A., Fratini, M., & Saveliev, S. V. (2023). Human Pineal Gland Involutionary Process: New Findings. J Gerontol A Biol Sci Med Sci, 78(9), 1558-1560. Retrieved from doi:10.1093/gerona/glad091
  23. Junemann, O., Ivanova, A. G., Bukreeva, I., Zolotov, D. A., Fratini, M., Cedola, A., . . . Saveliev, S. V. (2023). Comparative study of calcification in human choroid plexus, pineal gland, and habenula. Cell Tissue Res, 393(3), 537-545. Retrieved from doi:10.1007/s00441-023-03800-7
  24. Kamath, J., Virdi, S., & Winokur, A. (2015). Sleep Disturbances in Schizophrenia. Psychiatr Clin North Am, 38(4), 777-792. Retrieved from doi:10.1016/j.psc.2015.07.007
  25. Kaur, C., Sivakumar, V., Lu, J., & Ling, E. A. (2007). Increased vascular permeability and nitric oxide production in response to hypoxia in the pineal gland. J Pineal Res, 42(4), 338-349. Retrieved from doi:10.1111/j.1600-079X.2007.00424.x
  26. Kitkhuandee, A., Sawanyawisuth, K., Johns, N. P., Kanpittaya, J., & Johns, J. (2014). Pineal calcification is associated with symptomatic cerebral infarction. J Stroke Cerebrovasc Dis, 23(2), 249-253. Retrieved from doi:10.1016/j.jstrokecerebrovasdis.2013.01.009
  27. Koenig, J. I., Kirkpatrick, B., & Lee, P. (2002). Glucocorticoid hormones and early brain development in schizophrenia. Neuropsychopharmacology, 27(2), 309-318. doi:10.1016/s0893-133x(01)00396-7
  28. Kopani, M., Vranikova, B., Kosnac, D., Zeman, M., Sisovsky, V., Polakovicova, S., & Biro, C. (2019). Pineal gland calcification under hypoxic conditions. Physiol Res, 68(Suppl 4), S405-S413. Retrieved from doi:10.33549/physiolres.934378
  29. Krstić, R., & Golaz, J. (1977). Ultrastructural and X-ray microprobe comparison of gerbil and human pineal acervuli. Experientia, 33(4), 507-508. doi:10.1007/bf01922240
  30. Lee, H. Y., Ng, I., Lian, D. W., Yap, W. M., & Chuah, K. L. (2011). Cytological features of the native pineal gland in intraoperative squash preparations. Diagn Cytopathol, 39(3), 196-199. Retrieved from doi:10.1002/dc.21373
  31. Li, Y., Zhang, J., Wan, J., Liu, A., & Sun, J. (2020). Melatonin regulates Abeta production/clearance balance and Abeta neurotoxicity: A potential therapeutic molecule for Alzheimer's disease. Biomed Pharmacother, 132, 110887. Retrieved from doi:10.1016/j.biopha.2020.110887
  32. Lim, M. M., Gerstner, J. R., & Holtzman, D. M. (2014). The sleep-wake cycle and Alzheimer's disease: what do we know? Neurodegener Dis Manag, 4(5), 351-362. doi:10.2217/nmt.14.33
  33. Liu, X. J., Yuan, L., Yang, D., Han, W. N., Li, Q. S., Yang, W., . . . Qi, J. S. (2013). Melatonin protects against amyloid-beta-induced impairments of hippocampal LTP and spatial learning in rats. Synapse, 67(9), 626-636. Retrieved from doi:10.1002/syn.21677
  34. Macías-García, P., Rashid-López, R., Cruz-Gómez Á, J., Lozano-Soto, E., Sanmartino, F., Espinosa-Rosso, R., & González-Rosa, J. J. (2022). Neuropsychiatric Symptoms in Clinically Defined Parkinson's Disease: An Updated Review of Literature. Behav Neurol, 2022, 1213393. doi:10.1155/2022/1213393
  35. Mack, J. M., Schamne, M. G., Sampaio, T. B., Pertile, R. A., Fernandes, P. A., Markus, R. P., & Prediger, R. D. (2016). Melatoninergic System in Parkinson's Disease: From Neuroprotection to the Management of Motor and Nonmotor Symptoms. Oxid Med Cell Longev, 2016, 3472032. Retrieved from doi:10.1155/2016/3472032
  36. Moon, E., Kim, K., Partonen, T., & Linnaranta, O. (2022). Role of Melatonin in the Management of Sleep and Circadian Disorders in the Context of Psychiatric Illness. Curr Psychiatry Rep, 24(11), 623-634. Retrieved from doi:10.1007/s11920-022-01369-6
  37. Mrvelj, A., & Womble, M. D. (2020). Fluoride-Free Diet Stimulates Pineal Growth in Aged Male Rats. Biol Trace Elem Res, 197(1), 175-183. Retrieved from doi:10.1007/s12011-019-01964-4
  38. Muñoz-Jurado, A., Escribano, B. M., Caballero-Villarraso, J., Galván, A., Agüera, E., Santamaría, A., & Túnez, I. (2022). Melatonin and multiple sclerosis: antioxidant, anti-inflammatory and immunomodulator mechanism of action. Inflammopharmacology, 30(5), 1569-1596. doi:10.1007/s10787-022-01011-0
  39. Noseda, A. C. D., Rodrigues, L. S., Targa, A. D. S., Ilkiw, J. L., Fagotti, J., Dos Santos, P. D., . . . Lima, M. M. S. (2021). MT(2) melatonin receptors expressed in the olfactory bulb modulate depressive-like behavior and olfaction in the 6-OHDA model of Parkinson's disease. Eur J Pharmacol, 891, 173722. doi:10.1016/j.ejphar.2020.173722
  40. Novais, A. A., Chuffa, L. G. A., Zuccari, D., & Reiter, R. J. (2021). Exosomes and Melatonin: Where Their Destinies Intersect. Front Immunol, 12, 692022. Retrieved from doi:10.3389/fimmu.2021.692022
  41. Ozan, E., Sonmez, M. F., Ozan, S., Colakoglu, N., Yilmaz, S., & Kuloglu, T. (2007). Effects of melatonin and vitamin C on cigarette smoke-induced damage in the kidney. Toxicol Ind Health, 23(8), 479-485. doi:10.1177/0748233708089023
  42. Ozansoy, M., Ozansoy, M. B., Yulug, B., Cankaya, S., Kilic, E., Goktekin, S., & Kilic, U. (2020). Melatonin affects the release of exosomes and tau-content in in vitro amyloid-beta toxicity model. J Clin Neurosci, 73, 237-244. Retrieved from doi:10.1016/j.jocn.2019.11.046
  43. Ozguner, F., Koyu, A., & Cesur, G. (2005). Active smoking causes oxidative stress and decreases blood melatonin levels. Toxicol Ind Health, 21(1-2), 21-26. doi:10.1191/0748233705th211oa
  44. Parhizkar, S., Gent, G., Chen, Y., Rensing, N., Gratuze, M., Strout, G., . . . Holtzman, D. M. (2023). Sleep deprivation exacerbates microglial reactivity and Aβ deposition in a TREM2-dependent manner in mice. Sci Transl Med, 15(693), eade6285. doi:10.1126/scitranslmed.ade6285
  45. Patel, S., Rahmani, B., Gandhi, J., Seyam, O., Joshi, G., Reid, I., . . . Khan, S. A. (2020). Revisiting the pineal gland: a review of calcification, masses, precocious puberty, and melatonin functions. Int J Neurosci, 130(5), 464-475. Retrieved from doi:10.1080/00207454.2019.1692838
  46. Razzaque, M. S. (2011). The dualistic role of vitamin D in vascular calcifications. Kidney Int, 79(7), 708-714. doi:10.1038/ki.2010.432
  47. Reiter, R. J., Richardson, B. A., Johnson, L. Y., Ferguson, B. N., & Dinh, D. T. (1980). Pineal melatonin rhythm: reduction in aging Syrian hamsters. Science, 210(4476), 1372-1373. doi:10.1126/science.7434032
  48. Rosenstein, R. E., Estévez, A. G., & Cardinali, D. P. (1989). Time-Dependent Effect of Melatonin on Glutamic Acid Decarboxylase Activity and CI Influx in Rat Hypothalamus. J Neuroendocrinol, 1(6), 443-447. doi:10.1111/j.1365-2826.1989.tb00145.x
  49. Sandyk, R. (1992). Pineal and habenula calcification in schizophrenia. Int J Neurosci, 67(1-4), 19-30. doi:10.3109/00207459208994773
  50. Scalzo, P., Kummer, A., Bretas, T. L., Cardoso, F., & Teixeira, A. L. (2010). Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson's disease. J Neurol, 257(4), 540-545. Retrieved from doi:10.1007/s00415-009-5357-2
  51. Sharma, R., McMillan, C. R., Tenn, C. C., & Niles, L. P. (2006). Physiological neuroprotection by melatonin in a 6-hydroxydopamine model of Parkinson's disease. Brain Res, 1068(1), 230-236. doi:10.1016/j.brainres.2005.10.084
  52. Sigurdardottir, L. G., Markt, S. C., Sigurdsson, S., Aspelund, T., Fall, K., Schernhammer, E., . . . Mucci, L. A. (2016). Pineal Gland Volume Assessed by MRI and Its Correlation with 6-Sulfatoxymelatonin Levels among Older Men. J Biol Rhythms, 31(5), 461-469. Retrieved from doi:10.1177/0748730416656948
  53. Song, J. (2019). Pineal gland dysfunction in Alzheimer's disease: relationship with the immune-pineal axis, sleep disturbance, and neurogenesis. Mol Neurodegener, 14(1), 28. Retrieved from doi:10.1186/s13024-019-0330-8
  54. Surmeier, D. J. (2018). Determinants of dopaminergic neuron loss in Parkinson's disease. FEBS J, 285(19), 3657-3668. doi:10.1111/febs.14607
  55. Takahashi, T., Sasabayashi, D., Takayanagi, Y., Higuchi, Y., Mizukami, Y., Akasaki, Y., . . . Suzuki, M. (2021). Potential contribution of pineal atrophy and pineal cysts toward vulnerability and clinical characteristics of psychosis. Neuroimage Clin, 32, 102805. doi:10.1016/j.nicl.2021.102805
  56. Tan, D. X., Hardeland, R., Manchester, L. C., Paredes, S. D., Korkmaz, A., Sainz, R. M., . . . Reiter, R. J. (2010). The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev Camb Philos Soc, 85(3), 607-623. Retrieved from doi:10.1111/j.1469-185X.2009.00118.x
  57. Tomas-Zapico, C., & Coto-Montes, A. (2005). A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res, 39(2), 99-104. Retrieved from doi:10.1111/j.1600-079X.2005.00248.x
  58. Welsh, M. G. (1984). Cytochemical analysis of calcium distribution in the superficial pineal gland of the Mongolian gerbil. J Pineal Res, 1(4), 305-316. doi:10.1111/j.1600-079x.1984.tb00221.x
  59. Whitehead, M. T., Oh, C., Raju, A., & Choudhri, A. F. (2015). Physiologic pineal region, choroid plexus, and dural calcifications in the first decade of life. AJNR Am J Neuroradiol, 36(3), 575-580. Retrieved from doi:10.3174/ajnr.A4153
  60. Xu, F., Zhong, J. Y., Lin, X., Shan, S. K., Guo, B., Zheng, M. H., . . . Yuan, L. Q. (2020). Melatonin alleviates vascular calcification and ageing through exosomal miR-204/miR-211 cluster in a paracrine manner. J Pineal Res, 68(3), e12631. Retrieved from doi:10.1111/jpi.12631
  61. Yang, H. J., Kim, M. J., Kim, S. S., & Cho, Y. W. (2021). Melatonin modulates nitric oxide-regulated WNK-SPAK/OSR1-NKCC1 signaling in dorsal raphe nucleus of rats. Korean J Physiol Pharmacol, 25(5), 449-457. Retrieved from doi:10.4196/kjpp.2021.25.5.449
  62. Zhang, Y., He, F., Chen, Z., Su, Q., Yan, M., Zhang, Q., . . . Han, Y. (2019). Melatonin modulates IL-1β-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation. Aging (Albany NY), 11(22), 10499-10512. doi:10.18632/aging.102472
  63. Zhao, W., Zhu, D. M., Zhang, Y., Zhang, C., Wang, Y., Yang, Y., . . . Yu, Y. (2019). Pineal gland abnormality in major depressive disorder. Psychiatry Res Neuroimaging, 289, 13-17. Retrieved from doi:10.1016/j.pscychresns.2019.05.004
  64. Zündorf, G., & Reiser, G. (2011). Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal, 14(7), 1275-1288. doi:10.1089/ars.2010.3359

How to Cite

Liu, Xinnan, and Haotian Liu. “Exploring Links Between Pineal Gland Calcification and Central Nervous System Disease”. Human Brain, vol. 2, no. 4, Dec. 2023, doi:10.37819/hb.4.1790.





Article Details


Published: 2023-12-05

Most Read This Month


Copyright (c) 2023 Xinnan Liu, Haotian Liu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.