Exploring Links between Pineal Gland Calcification and Central Nervous System Disease

Authors

  • Xinnan Liu Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.
  • Haotian Liu Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.

DOI:

https://doi.org/10.37819/hb.4.1790

Keywords:

Pineal gland, calcification, pineal gland calculi, central nervous system disease

Abstract

Central nervous system disease is globally common with dysfunction of the brain and spinal cord, which significantly affects the quality of life, such as sleep disturbances. Pineal gland is pivotal in regulating sleep cycles and circadian rhythms. And melatonin, secreted by pineal gland, promotes neurodevelopment and maintains neurohomeostasis, which is also pivotal in the modulation of central nervous system disorders. In recent years, studies have found that patients with central nervous system damage often have degeneration of the pineal gland, characterized by a decrease in pineal gland volume, reduced melatonin secretion, and even parenchymal calcification. An increasing number of Alzheimer's disease patients have been observed to exhibit pineal gland calcification. Research suggests that sleep disturbances accompanying central nervous system disorders can be attributed to the degeneration of pineal gland function, indicating a potential contribution of gland calcification to central nervous system diseases. Here, we review the recent research on pineal gland calculi and discuss the potential relationship between pineal gland calcification and various central nervous system diseases, contributing to a deeper understanding of the intricate mechanisms underlying neurological disorders.

References

Adams, L. C., Boker, S. M., Bender, Y. Y., Diederichs, G., Fallenberg, E. M., Wagner, M., . . . Makowski, M. R. (2017). Diagnostic accuracy of susceptibility-weighted magnetic resonance imaging for the evaluation of pineal gland calcification. PLoS One, 12(3), e0172764. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28278291. doi:10.1371/journal.pone.0172764

Al Hajri, F., Sirasanagandla, S. R., Boudaka, A., Al Dhuhli, H., & Al Ajmi, E. (2023). Physiological Intracranial Calcifications in Children: A computed tomography-based study. Sultan Qaboos Univ Med J, 23(2), 227-232. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/37377832. doi:10.18295/squmj.9.2022.058

Alghamdi, B. S. (2018). The neuroprotective role of melatonin in neurological disorders. J Neurosci Res, 96(7), 1136-1149. doi:10.1002/jnr.24220

Baconnier, S., Lang, S. B., Polomska, M., Hilczer, B., Berkovic, G., & Meshulam, G. (2002). Calcite microcrystals in the pineal gland of the human brain: first physical and chemical studies. Bioelectromagnetics, 23(7), 488-495. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12224052. doi:10.1002/bem.10053

Belay, D. G., & Worku, M. G. (2023). Prevalence of pineal gland calcification: systematic review and meta-analysis. Syst Rev, 12(1), 32. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/36879256. doi:10.1186/s13643-023-02205-5

Breen, D. P., Vuono, R., Nawarathna, U., Fisher, K., Shneerson, J. M., Reddy, A. B., & Barker, R. A. (2014). Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol, 71(5), 589-595. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24687146. doi:10.1001/jamaneurol.2014.65

Bukreeva, I., Junemann, O., Cedola, A., Brun, F., Longo, E., Tromba, G., . . . Asadchikov, V. E. (2023). Micromorphology of pineal gland calcification in age-related neurodegenerative diseases. Med Phys, 50(3), 1601-1613. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/36309985. doi:10.1002/mp.16080

Chen, W. R., Zhou, Y. J., Sha, Y., Wu, X. P., Yang, J. Q., & Liu, F. (2020). Melatonin attenuates vascular calcification by inhibiting mitochondria fission via an AMPK/Drp1 signalling pathway. J Cell Mol Med, 24(11), 6043-6054. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/32368857. doi:10.1111/jcmm.15157

Duan, C., Jenkins, Z. M., & Castle, D. (2021). Therapeutic use of melatonin in schizophrenia: A systematic review. World J Psychiatry, 11(8), 463-476. doi:10.5498/wjp.v11.i8.463

Esposito, E., & Cuzzocrea, S. (2010). Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol, 8(3), 228-242. doi:10.2174/157015910792246155

Gao, Y., Wei, S., Gao, F., Gao, L., Dang, L., Shang, S., . . . Qu, Q. (2020). Sleep Disturbance is Associated With Higher Plasma Aβ Levels in Cognitively Normal Adults-A Population-Based Cross-Sectional Study. Front Aging Neurosci, 12, 615838. doi:10.3389/fnagi.2020.615838

Gheban, B. A., Colosi, H. A., Gheban-Rosca, I. A., Georgiu, C., Gheban, D., Crisan, D., & Crisan, M. (2023). Digital histological morphometry of the human pineal gland in a postmortem study, with endocrine and neurological clinical implications. Anat Histol Embryol, 52(1), 12-20. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/35762404. doi:10.1111/ahe.12828

Gheban, B. A., Colosi, H. A., Gheban-Rosca, I. A., Pop, B., Domsa, A. T., Georgiu, C., . . . Crisan, M. (2021). Age-Related Changes of the Pineal Gland in Humans: A Digital Anatomo-Histological Morphometric Study on Autopsy Cases with Comparison to Predigital-Era Studies. Medicina (Kaunas), 57(4). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/33921100. doi:10.3390/medicina57040383

Gheban, B. A., Rosca, I. A., & Crisan, M. (2019). The morphological and functional characteristics of the pineal gland. Med Pharm Rep, 92(3), 226-234. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31460502. doi:10.15386/mpr-1235

Ghorbani, A., Pishkar, L., Saravi, K. V., & Chen, M. (2023). Melatonin-mediated endogenous nitric oxide coordinately boosts stability through proline and nitrogen metabolism, antioxidant capacity, and Na(+)/K(+) transporters in tomato under NaCl stress. Front Plant Sci, 14, 1135943. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/36993844. doi:10.3389/fpls.2023.1135943

Ghorbanlou, M., Moradi, F., & Mehdizadeh, M. (2022). Frequency, shape, and estimated volume of intracranial physiologic calcification in different age groups investigated by brain computed tomography scan: a retrospective study. Anat Cell Biol, 55(1), 63-71. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/34866062. doi:10.5115/acb.21.137

Gorgulu, F. F., & Koc, A. S. (2021). Is there any relationship between autism and pineal gland volume? Pol J Radiol, 86, e225-e231. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/34093919. doi:10.5114/pjr.2021.105689

Guerrero, J. M., & Reiter, R. J. (2002). Melatonin-immune system relationships. Curr Top Med Chem, 2(2), 167-179. doi:10.2174/1568026023394335

Harisha, K., Arava, S., Singh, S., & Pariplavi, M. (2023). A morphological study of human pineal gland in post-mortem cases. Morphologie, 107(357), 193-198. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/35786527. doi:10.1016/j.morpho.2022.06.095

Howes, O. D., & Murray, R. M. (2014). Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet, 383(9929), 1677-1687. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24315522. doi:10.1016/S0140-6736(13)62036-X

Jalali, N., Firouzabadi, M. D., Mirshekar, A., Khalili, P., Ravangard, A. R., Ahmadi, J., . . . Jalali, Z. (2023). Cross-sectional analysis of potential risk factors of the pineal gland calcification. BMC Endocr Disord, 23(1), 49. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/36855104. doi:10.1186/s12902-023-01301-w

Junemann, O., Bukreeva, I., Otlyga, D. A., Cedola, A., Fratini, M., & Saveliev, S. V. (2023). Human Pineal Gland Involutionary Process: New Findings. J Gerontol A Biol Sci Med Sci, 78(9), 1558-1560. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/36966358. doi:10.1093/gerona/glad091

Junemann, O., Ivanova, A. G., Bukreeva, I., Zolotov, D. A., Fratini, M., Cedola, A., . . . Saveliev, S. V. (2023). Comparative study of calcification in human choroid plexus, pineal gland, and habenula. Cell Tissue Res, 393(3), 537-545. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/37354235. doi:10.1007/s00441-023-03800-7

Kamath, J., Virdi, S., & Winokur, A. (2015). Sleep Disturbances in Schizophrenia. Psychiatr Clin North Am, 38(4), 777-792. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26600108. doi:10.1016/j.psc.2015.07.007

Kaur, C., Sivakumar, V., Lu, J., & Ling, E. A. (2007). Increased vascular permeability and nitric oxide production in response to hypoxia in the pineal gland. J Pineal Res, 42(4), 338-349. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17439550. doi:10.1111/j.1600-079X.2007.00424.x

Kitkhuandee, A., Sawanyawisuth, K., Johns, N. P., Kanpittaya, J., & Johns, J. (2014). Pineal calcification is associated with symptomatic cerebral infarction. J Stroke Cerebrovasc Dis, 23(2), 249-253. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23434443. doi:10.1016/j.jstrokecerebrovasdis.2013.01.009

Koenig, J. I., Kirkpatrick, B., & Lee, P. (2002). Glucocorticoid hormones and early brain development in schizophrenia. Neuropsychopharmacology, 27(2), 309-318. doi:10.1016/s0893-133x(01)00396-7

Kopani, M., Vranikova, B., Kosnac, D., Zeman, M., Sisovsky, V., Polakovicova, S., & Biro, C. (2019). Pineal gland calcification under hypoxic conditions. Physiol Res, 68(Suppl 4), S405-S413. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/32118471. doi:10.33549/physiolres.934378

Krstić, R., & Golaz, J. (1977). Ultrastructural and X-ray microprobe comparison of gerbil and human pineal acervuli. Experientia, 33(4), 507-508. doi:10.1007/bf01922240

Lee, H. Y., Ng, I., Lian, D. W., Yap, W. M., & Chuah, K. L. (2011). Cytological features of the native pineal gland in intraoperative squash preparations. Diagn Cytopathol, 39(3), 196-199. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21319322. doi:10.1002/dc.21373

Li, Y., Zhang, J., Wan, J., Liu, A., & Sun, J. (2020). Melatonin regulates Abeta production/clearance balance and Abeta neurotoxicity: A potential therapeutic molecule for Alzheimer's disease. Biomed Pharmacother, 132, 110887. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/33254429. doi:10.1016/j.biopha.2020.110887

Lim, M. M., Gerstner, J. R., & Holtzman, D. M. (2014). The sleep-wake cycle and Alzheimer's disease: what do we know? Neurodegener Dis Manag, 4(5), 351-362. doi:10.2217/nmt.14.33

Liu, X. J., Yuan, L., Yang, D., Han, W. N., Li, Q. S., Yang, W., . . . Qi, J. S. (2013). Melatonin protects against amyloid-beta-induced impairments of hippocampal LTP and spatial learning in rats. Synapse, 67(9), 626-636. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23620224. doi:10.1002/syn.21677

Macías-García, P., Rashid-López, R., Cruz-Gómez Á, J., Lozano-Soto, E., Sanmartino, F., Espinosa-Rosso, R., & González-Rosa, J. J. (2022). Neuropsychiatric Symptoms in Clinically Defined Parkinson's Disease: An Updated Review of Literature. Behav Neurol, 2022, 1213393. doi:10.1155/2022/1213393

Mack, J. M., Schamne, M. G., Sampaio, T. B., Pertile, R. A., Fernandes, P. A., Markus, R. P., & Prediger, R. D. (2016). Melatoninergic System in Parkinson's Disease: From Neuroprotection to the Management of Motor and Nonmotor Symptoms. Oxid Med Cell Longev, 2016, 3472032. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27829983. doi:10.1155/2016/3472032

Moon, E., Kim, K., Partonen, T., & Linnaranta, O. (2022). Role of Melatonin in the Management of Sleep and Circadian Disorders in the Context of Psychiatric Illness. Curr Psychiatry Rep, 24(11), 623-634. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/36227449. doi:10.1007/s11920-022-01369-6

Mrvelj, A., & Womble, M. D. (2020). Fluoride-Free Diet Stimulates Pineal Growth in Aged Male Rats. Biol Trace Elem Res, 197(1), 175-183. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31713773. doi:10.1007/s12011-019-01964-4

Muñoz-Jurado, A., Escribano, B. M., Caballero-Villarraso, J., Galván, A., Agüera, E., Santamaría, A., & Túnez, I. (2022). Melatonin and multiple sclerosis: antioxidant, anti-inflammatory and immunomodulator mechanism of action. Inflammopharmacology, 30(5), 1569-1596. doi:10.1007/s10787-022-01011-0

Noseda, A. C. D., Rodrigues, L. S., Targa, A. D. S., Ilkiw, J. L., Fagotti, J., Dos Santos, P. D., . . . Lima, M. M. S. (2021). MT(2) melatonin receptors expressed in the olfactory bulb modulate depressive-like behavior and olfaction in the 6-OHDA model of Parkinson's disease. Eur J Pharmacol, 891, 173722. doi:10.1016/j.ejphar.2020.173722

Novais, A. A., Chuffa, L. G. A., Zuccari, D., & Reiter, R. J. (2021). Exosomes and Melatonin: Where Their Destinies Intersect. Front Immunol, 12, 692022. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/34177952. doi:10.3389/fimmu.2021.692022

Ozan, E., Sonmez, M. F., Ozan, S., Colakoglu, N., Yilmaz, S., & Kuloglu, T. (2007). Effects of melatonin and vitamin C on cigarette smoke-induced damage in the kidney. Toxicol Ind Health, 23(8), 479-485. doi:10.1177/0748233708089023

Ozansoy, M., Ozansoy, M. B., Yulug, B., Cankaya, S., Kilic, E., Goktekin, S., & Kilic, U. (2020). Melatonin affects the release of exosomes and tau-content in in vitro amyloid-beta toxicity model. J Clin Neurosci, 73, 237-244. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/32061493. doi:10.1016/j.jocn.2019.11.046

Ozguner, F., Koyu, A., & Cesur, G. (2005). Active smoking causes oxidative stress and decreases blood melatonin levels. Toxicol Ind Health, 21(1-2), 21-26. doi:10.1191/0748233705th211oa

Parhizkar, S., Gent, G., Chen, Y., Rensing, N., Gratuze, M., Strout, G., . . . Holtzman, D. M. (2023). Sleep deprivation exacerbates microglial reactivity and Aβ deposition in a TREM2-dependent manner in mice. Sci Transl Med, 15(693), eade6285. doi:10.1126/scitranslmed.ade6285

Patel, S., Rahmani, B., Gandhi, J., Seyam, O., Joshi, G., Reid, I., . . . Khan, S. A. (2020). Revisiting the pineal gland: a review of calcification, masses, precocious puberty, and melatonin functions. Int J Neurosci, 130(5), 464-475. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31714865. doi:10.1080/00207454.2019.1692838

Razzaque, M. S. (2011). The dualistic role of vitamin D in vascular calcifications. Kidney Int, 79(7), 708-714. doi:10.1038/ki.2010.432

Reiter, R. J., Richardson, B. A., Johnson, L. Y., Ferguson, B. N., & Dinh, D. T. (1980). Pineal melatonin rhythm: reduction in aging Syrian hamsters. Science, 210(4476), 1372-1373. doi:10.1126/science.7434032

Rosenstein, R. E., Estévez, A. G., & Cardinali, D. P. (1989). Time-Dependent Effect of Melatonin on Glutamic Acid Decarboxylase Activity and CI Influx in Rat Hypothalamus. J Neuroendocrinol, 1(6), 443-447. doi:10.1111/j.1365-2826.1989.tb00145.x

Sandyk, R. (1992). Pineal and habenula calcification in schizophrenia. Int J Neurosci, 67(1-4), 19-30. doi:10.3109/00207459208994773

Scalzo, P., Kummer, A., Bretas, T. L., Cardoso, F., & Teixeira, A. L. (2010). Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson's disease. J Neurol, 257(4), 540-545. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19847468. doi:10.1007/s00415-009-5357-2

Sharma, R., McMillan, C. R., Tenn, C. C., & Niles, L. P. (2006). Physiological neuroprotection by melatonin in a 6-hydroxydopamine model of Parkinson's disease. Brain Res, 1068(1), 230-236. doi:10.1016/j.brainres.2005.10.084

Sigurdardottir, L. G., Markt, S. C., Sigurdsson, S., Aspelund, T., Fall, K., Schernhammer, E., . . . Mucci, L. A. (2016). Pineal Gland Volume Assessed by MRI and Its Correlation with 6-Sulfatoxymelatonin Levels among Older Men. J Biol Rhythms, 31(5), 461-469. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27449477. doi:10.1177/0748730416656948

Song, J. (2019). Pineal gland dysfunction in Alzheimer's disease: relationship with the immune-pineal axis, sleep disturbance, and neurogenesis. Mol Neurodegener, 14(1), 28. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31296240. doi:10.1186/s13024-019-0330-8

Surmeier, D. J. (2018). Determinants of dopaminergic neuron loss in Parkinson's disease. FEBS J, 285(19), 3657-3668. doi:10.1111/febs.14607

Takahashi, T., Sasabayashi, D., Takayanagi, Y., Higuchi, Y., Mizukami, Y., Akasaki, Y., . . . Suzuki, M. (2021). Potential contribution of pineal atrophy and pineal cysts toward vulnerability and clinical characteristics of psychosis. Neuroimage Clin, 32, 102805. doi:10.1016/j.nicl.2021.102805

Tan, D. X., Hardeland, R., Manchester, L. C., Paredes, S. D., Korkmaz, A., Sainz, R. M., . . . Reiter, R. J. (2010). The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev Camb Philos Soc, 85(3), 607-623. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20039865. doi:10.1111/j.1469-185X.2009.00118.x

Tomas-Zapico, C., & Coto-Montes, A. (2005). A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res, 39(2), 99-104. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16098085. doi:10.1111/j.1600-079X.2005.00248.x

Welsh, M. G. (1984). Cytochemical analysis of calcium distribution in the superficial pineal gland of the Mongolian gerbil. J Pineal Res, 1(4), 305-316. doi:10.1111/j.1600-079x.1984.tb00221.x

Whitehead, M. T., Oh, C., Raju, A., & Choudhri, A. F. (2015). Physiologic pineal region, choroid plexus, and dural calcifications in the first decade of life. AJNR Am J Neuroradiol, 36(3), 575-580. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25355815. doi:10.3174/ajnr.A4153

Xu, F., Zhong, J. Y., Lin, X., Shan, S. K., Guo, B., Zheng, M. H., . . . Yuan, L. Q. (2020). Melatonin alleviates vascular calcification and ageing through exosomal miR-204/miR-211 cluster in a paracrine manner. J Pineal Res, 68(3), e12631. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31943334. doi:10.1111/jpi.12631

Yang, H. J., Kim, M. J., Kim, S. S., & Cho, Y. W. (2021). Melatonin modulates nitric oxide-regulated WNK-SPAK/OSR1-NKCC1 signaling in dorsal raphe nucleus of rats. Korean J Physiol Pharmacol, 25(5), 449-457. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/34448462. doi:10.4196/kjpp.2021.25.5.449

Zhang, Y., He, F., Chen, Z., Su, Q., Yan, M., Zhang, Q., . . . Han, Y. (2019). Melatonin modulates IL-1β-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation. Aging (Albany NY), 11(22), 10499-10512. doi:10.18632/aging.102472

Zhao, W., Zhu, D. M., Zhang, Y., Zhang, C., Wang, Y., Yang, Y., . . . Yu, Y. (2019). Pineal gland abnormality in major depressive disorder. Psychiatry Res Neuroimaging, 289, 13-17. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31121531. doi:10.1016/j.pscychresns.2019.05.004

Zündorf, G., & Reiser, G. (2011). Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal, 14(7), 1275-1288. doi:10.1089/ars.2010.3359

Downloads

Published

2023-12-05

How to Cite

Liu, Xinnan, and Haotian Liu. “Exploring Links Between Pineal Gland Calcification and Central Nervous System Disease”. Human Brain, vol. 2, no. 4, Dec. 2023, doi:10.37819/hb.4.1790.

Issue

Section

Review Articles