Preclinical Experimental Models for Human Glioma
Abstract
Gliomas are one of the most common incurable brain tumors in adults with poor prognosis. Attempts at modeling human gliomas over the past decades have not only improved our knowledge of glioma biology but also boosted the development of therapeutic strategies. Despite great endeavors, gliomas are not responsive to the current tumor treatments, such as radiotherapy, chemotherapy, and immunotherapy due to their high inter- and intra-heterogenic tumor microenvironment (TME) and immune suppressive landscape. Therefore, it is significant to utilize suitable models to investigate the tumorigenesis, progression, and invasion of gliomas and evaluate potential therapies. Ideally, glioma models should fully recapitulate the genetic alterations and histological characteristics of the parental tumor, as well as reproduce the interactions between the tumor and its TME. In this review, we will discuss and compare the pros and cons of the current glioma models including traditional mouse models, established cell lines, newly 3D-cultured organoids, and 3D bioprinting glioma models in glioma pathogenesis research and therapy evaluation.
References
- Abate, L. E., Mukherjee, P., & Seyfried, T. N. (2006). Gene-linked shift in ganglioside distribution influences growth and vascularity in a mouse astrocytoma. J Neurochem, 98(6), 1973-1984. doi:10.1111/j.1471-4159.2006.04097.x
- Ahmad, M., Frei, K., Willscher, E., Stefanski, A., Kaulich, K., Roth, P., . . . Weller, M. (2014). How stemlike are sphere cultures from long-term cancer cell lines? Lessons from mouse glioma models. J Neuropathol Exp Neurol, 73(11), 1062-1077. doi:10.1097/nen.0000000000000130
- Akbarnejad, Z., Eskandary, H., Dini, L., Vergallo, C., Nematollahi-Mahani, S. N., Farsinejad, A., . . . Ahmadi, M. (2017). Cytotoxicity of temozolomide on human glioblastoma cells is enhanced by the concomitant exposure to an extremely low-frequency electromagnetic field (100Hz, 100G). Biomed Pharmacother, 92, 254-264. doi:10.1016/j.biopha.2017.05.050
- Allen, M., Bjerke, M., Edlund, H., Nelander, S., & Westermark, B. (2016). Origin of the U87MG glioma cell line: Good news and bad news. Sci Transl Med, 8(354), 354re353. doi:10.1126/scitranslmed.aaf6853
- Ausman, J. I., Shapiro, W. R., & Rall, D. P. (1970). Studies on the chemotherapy of experimental brain tumors: development of an experimental model. Cancer Res, 30(9), 2394-2400.
- Bejarano, L., Jordao, M. J. C., & Joyce, J. A. (2021). Therapeutic Targeting of the Tumor Microenvironment. Cancer Discov, 11(4), 933-959. doi:10.1158/2159-8290.CD-20-1808
- Ben-David, U., Ha, G., Tseng, Y. Y., Greenwald, N. F., Oh, C., Shih, J., . . . Golub, T. R. (2017). Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet, 49(11), 1567-1575. doi:10.1038/ng.3967
- Binello, E., Qadeer, Z. A., Kothari, H. P., Emdad, L., & Germano, I. M. (2012). Stemness of the CT-2A Immunocompetent Mouse Brain Tumor Model: Characterization In Vitro. J Cancer, 3, 166-174. doi:10.7150/jca.4149
- Boccellato, C., & Rehm, M. (2022). Glioblastoma, from disease understanding towards optimal cell-based in vitro models. Cell Oncol (Dordr), 45(4), 527-541. doi:10.1007/s13402-022-00684-7
- Bosenberg, M., Liu, E. T., Yu, C. I., & Palucka, K. (2023). Mouse models for immuno-oncology. Trends Cancer, 9(7), 578-590. doi:10.1016/j.trecan.2023.03.009
- Candolfi, M., Curtin, J. F., Nichols, W. S., Muhammad, A. G., King, G. D., Pluhar, G. E., . . . Castro, M. G. (2007). Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol, 85(2), 133-148. doi:10.1007/s11060-007-9400-9
- Chen, R., Smith-Cohn, M., Cohen, A. L., & Colman, H. (2017). Glioma Subclassifications and Their Clinical Significance. Neurotherapeutics, 14(2), 284-297. doi:10.1007/s13311-017-0519-x
- Chen, Z., & Hambardzumyan, D. (2018). Immune Microenvironment in Glioblastoma Subtypes. Front Immunol, 9, 1004. doi:10.3389/fimmu.2018.01004
- Chiu, M., Taurino, G., Bianchi, M. G., Ottaviani, L., Andreoli, R., Ciociola, T., . . . Bussolati, O. (2018). Oligodendroglioma Cells Lack Glutamine Synthetase and Are Auxotrophic for Glutamine, but Do not Depend on Glutamine Anaplerosis for Growth. Int J Mol Sci, 19(4). doi:10.3390/ijms19041099
- Clevers, H. (2016). Modeling Development and Disease with Organoids. Cell, 165(7), 1586-1597. doi:10.1016/j.cell.2016.05.082
- Cohen, A. L., Holmen, S. L., & Colman, H. (2013). IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep, 13(5), 345. doi:10.1007/s11910-013-0345-4
- Dai, X., Ma, C., Lan, Q., & Xu, T. (2016). 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication, 8(4), 045005. doi:10.1088/1758-5090/8/4/045005
- Daniel, V. C., Marchionni, L., Hierman, J. S., Rhodes, J. T., Devereux, W. L., Rudin, C. M., . . . Watkins, D. N. (2009). A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res, 69(8), 3364-3373. doi:10.1158/0008-5472.CAN-08-4210
- Fraser, H. (1971). Astrocytomas in an inbred mouse strain. J Pathol, 103(4), 266-270. doi:10.1002/path.1711030410
- Haddad, A. F., Young, J. S., Amara, D., Berger, M. S., Raleigh, D. R., Aghi, M. K., & Butowski, N. A. (2021). Mouse models of glioblastoma for the evaluation of novel therapeutic strategies. Neurooncol Adv, 3(1), vdab100. doi:10.1093/noajnl/vdab100
- Heinrich, M. A., Bansal, R., Lammers, T., Zhang, Y. S., Michel Schiffelers, R., & Prakash, J. (2019). 3D-Bioprinted Mini-Brain: A Glioblastoma Model to Study Cellular Interactions and Therapeutics. Adv Mater, 31(14), e1806590. doi:10.1002/adma.201806590
- Heinrich, M. A., Liu, W., Jimenez, A., Yang, J., Akpek, A., Liu, X., . . . Zhang, Y. S. (2019). 3D Bioprinting: from Benches to Translational Applications. Small, 15(23), e1805510. doi:10.1002/smll.201805510
- Hermida, M. A., Kumar, J. D., Schwarz, D., Laverty, K. G., Di Bartolo, A., Ardron, M., . . . Leslie, N. R. (2020). Three dimensional in vitro models of cancer: Bioprinting multilineage glioblastoma models. Adv Biol Regul, 75, 100658. doi:10.1016/j.jbior.2019.100658
- Hetze, S., Sure, U., Schedlowski, M., Hadamitzky, M., & Barthel, L. (2021). Rodent Models to Analyze the Glioma Microenvironment. ASN Neuro, 13, 17590914211005074. doi:10.1177/17590914211005074
- Hicks, W. H., Bird, C. E., Traylor, J. I., Shi, D. D., El Ahmadieh, T. Y., Richardson, T. E., . . . Abdullah, K. G. (2021). Contemporary Mouse Models in Glioma Research. Cells, 10(3). doi:10.3390/cells10030712
- Huang, G. D., Chen, F. F., Ma, G. X., Li, W. P., Zheng, Y. Y., Meng, X. B., . . . Chen, L. (2021). Cassane diterpenoid derivative induces apoptosis in IDH1 mutant glioma cells through the inhibition of glutaminase in vitro and in vivo. Phytomedicine, 82, 153434. doi:10.1016/j.phymed.2020.153434
- Hubert, C. G., Rivera, M., Spangler, L. C., Wu, Q., Mack, S. C., Prager, B. C., . . . Rich, J. N. (2016). A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found In Vivo. Cancer Res, 76(8), 2465-2477. doi:10.1158/0008-5472.CAN-15-2402
- Huszthy, P. C., Daphu, I., Niclou, S. P., Stieber, D., Nigro, J. M., Sakariassen, P. O., . . . Bjerkvig, R. (2012). In vivo models of primary brain tumors: pitfalls and perspectives. Neuro Oncol, 14(8), 979-993. doi:10.1093/neuonc/nos135
- Ishii, N., Maier, D., Merlo, A., Tada, M., Sawamura, Y., Diserens, A. C., & Van Meir, E. G. (1999). Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol, 9(3), 469-479. doi:10.1111/j.1750-3639.1999.tb00536.x
- Jacob, F., Ming, G. L., & Song, H. (2020). Generation and biobanking of patient-derived glioblastoma organoids and their application in CAR T cell testing. Nat Protoc, 15(12), 4000-4033. doi:10.1038/s41596-020-0402-9
- Jacob, F., Salinas, R. D., Zhang, D. Y., Nguyen, P. T. T., Schnoll, J. G., Wong, S. Z. H., . . . Song, H. (2020). A Patient-Derived Glioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-tumoral Heterogeneity. Cell, 180(1), 188-204 e122. doi:10.1016/j.cell.2019.11.036
- Jacobs, V. L., Valdes, P. A., Hickey, W. F., & De Leo, J. A. (2011). Current review of in vivo GBM rodent models: emphasis on the CNS-1 tumour model. ASN Neuro, 3(3), e00063. doi:10.1042/AN20110014
- Jin, F., Jin-Lee, H. J., & Johnson, A. J. (2021). Mouse Models of Experimental Glioblastoma. In W. Debinski (Ed.), Gliomas. Brisbane (AU): Exon Publications. doi:10.36255/exonpublications.gliomas.2021.chapter2
- Johanns, T. M., Ward, J. P., Miller, C. A., Wilson, C., Kobayashi, D. K., Bender, D., . . . Dunn, G. P. (2016). Endogenous Neoantigen-Specific CD8 T Cells Identified in Two Glioblastoma Models Using a Cancer Immunogenomics Approach. Cancer Immunol Res, 4(12), 1007-1015. doi:10.1158/2326-6066.CIR-16-0156
- Jung, J., Seol, H. S., & Chang, S. (2018). The Generation and Application of Patient-Derived Xenograft Model for Cancer Research. Cancer Res Treat, 50(1), 1-10. doi:10.4143/crt.2017.307
- Kersten, K., de Visser, K. E., van Miltenburg, M. H., & Jonkers, J. (2017). Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med, 9(2), 137-153. doi:10.15252/emmm.201606857
- Khalsa, J. K., Cheng, N., Keegan, J., Chaudry, A., Driver, J., Bi, W. L., . . . Shah, K. (2020). Immune phenotyping of diverse syngeneic murine brain tumors identifies immunologically distinct types. Nat Commun, 11(1), 3912. doi:10.1038/s41467-020-17704-5
- Kijima, N., & Kanemura, Y. (2017). Mouse Models of Glioblastoma. In S. De Vleeschouwer (Ed.), Glioblastoma. Brisbane (AU): Codon Publications. doi:10.15586/codon.glioblastoma.2017.ch7
- Klein, E., Hau, A. C., Oudin, A., Golebiewska, A., & Niclou, S. P. (2020). Glioblastoma Organoids: Pre-Clinical Applications and Challenges in the Context of Immunotherapy. Front Oncol, 10, 604121. doi:10.3389/fonc.2020.604121
- Lenting, K., Verhaak, R., Ter Laan, M., Wesseling, P., & Leenders, W. (2017). Glioma: experimental models and reality. Acta Neuropathol, 133(2), 263-282. doi:10.1007/s00401-017-1671-4
- Letchuman, V., Ampie, L., Shah, A. H., Brown, D. A., Heiss, J. D., & Chittiboina, P. (2022). Syngeneic murine glioblastoma models: reactionary immune changes and immunotherapy intervention outcomes. Neurosurg Focus, 52(2), E5. doi:10.3171/2021.11.FOCUS21556
- Linkous, A., Balamatsias, D., Snuderl, M., Edwards, L., Miyaguchi, K., Milner, T., . . . Fine, H. A. (2019). Modeling Patient-Derived Glioblastoma with Cerebral Organoids. Cell Rep, 26(12), 3203-3211 e3205. doi:10.1016/j.celrep.2019.02.063
- Liu, C. J., Schaettler, M., Blaha, D. T., Bowman-Kirigin, J. A., Kobayashi, D. K., Livingstone, A. J., . . . Dunn, G. P. (2020). Treatment of an aggressive orthotopic murine glioblastoma model with combination checkpoint blockade and a multivalent neoantigen vaccine. Neuro Oncol, 22(9), 1276-1288. doi:10.1093/neuonc/noaa050
- Liu, Y., Wu, W., Cai, C., Zhang, H., Shen, H., & Han, Y. (2023). Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther, 8(1), 160. doi:10.1038/s41392-023-01419-2
- Long, P. M., Tighe, S. W., Driscoll, H. E., Moffett, J. R., Namboodiri, A. M., Viapiano, M. S., . . . Jaworski, D. M. (2013). Acetate supplementation induces growth arrest of NG2/PDGFRalpha-positive oligodendroglioma-derived tumor-initiating cells. PLoS One, 8(11), e80714. doi:10.1371/journal.pone.0080714
- Louis, D. N., Perry, A., Wesseling, P., Brat, D. J., Cree, I. A., Figarella-Branger, D., . . . Ellison, D. W. (2021). The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol, 23(8), 1231-1251. doi:10.1093/neuonc/noab106
- Ma, Q., Long, W., Xing, C., Chu, J., Luo, M., Wang, H. Y., . . . Wang, R. F. (2018). Cancer Stem Cells and Immunosuppressive Microenvironment in Glioma. Front Immunol, 9, 2924. doi:10.3389/fimmu.2018.02924
- Markwell, S. M., Ross, J. L., Olson, C. L., & Brat, D. J. (2022). Necrotic reshaping of the glioma microenvironment drives disease progression. Acta Neuropathol, 143(3), 291-310. doi:10.1007/s00401-021-02401-4
- Marsh, J., Mukherjee, P., & Seyfried, T. N. (2008). Akt-dependent proapoptotic effects of dietary restriction on late-stage management of a phosphatase and tensin homologue/tuberous sclerosis complex 2-deficient mouse astrocytoma. Clin Cancer Res, 14(23), 7751-7762. doi:10.1158/1078-0432.CCR-08-0213
- Martínez-Murillo, R., & Martínez, A. (2007). Standardization of an orthotopic mouse brain tumor model following transplantation of CT-2A astrocytoma cells. Histol Histopathol, 22(12), 1309-1326. doi:10.14670/hh-22.1309
- Marumoto, T., Tashiro, A., Friedmann-Morvinski, D., Scadeng, M., Soda, Y., Gage, F. H., & Verma, I. M. (2009). Development of a novel mouse glioma model using lentiviral vectors. Nat Med, 15(1), 110-116. doi:10.1038/nm.1863
- Matai, I., Kaur, G., Seyedsalehi, A., McClinton, A., & Laurencin, C. T. (2020). Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 226, 119536. doi:10.1016/j.biomaterials.2019.119536
- McNeill, R. S., Vitucci, M., Wu, J., & Miller, C. R. (2015). Contemporary murine models in preclinical astrocytoma drug development. Neuro Oncol, 17(1), 12-28. doi:10.1093/neuonc/nou288
- Kleihues, P. (2010). Erwin G. Van Meir (ed): CNS cancer: Models, markers, prognostic factors, targets, and therapeutic approaches. J Neurooncol, 98(3), 435-436. doi:10.1007/s11060-009-0088-x
- Mukherjee, P., Abate, L. E., & Seyfried, T. N. (2004). Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin Cancer Res, 10(16), 5622-5629. doi:10.1158/1078-0432.Ccr-04-0308
- Murphy, S. V., De Coppi, P., & Atala, A. (2020). Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng, 4(4), 370-380. doi:10.1038/s41551-019-0471-7
- Neufeld, L., Yeini, E., Reisman, N., Shtilerman, Y., Ben-Shushan, D., Pozzi, S., . . . Satchi-Fainaro, R. (2021). Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment. Sci Adv, 7(34). doi:10.1126/sciadv.abi9119
- Nistér, M., & Westermark, B. (1994). 2 - Human Glioma Cell Lines. In R. J. Hay, J.-G. Park, & A. Gazdar (Eds.), Atlas of Human Tumor Cell Lines (pp. 17-42). San Diego: Academic Press.doi: 10.1016/B978-0-12-333530-2.50005-8
- Noorani, I. (2019). Genetically Engineered Mouse Models of Gliomas: Technological Developments for Translational Discoveries. Cancers (Basel), 11(9). doi:10.3390/cancers11091335
- Ogawa, J., Pao, G. M., Shokhirev, M. N., & Verma, I. M. (2018). Glioblastoma Model Using Human Cerebral Organoids. Cell Rep, 23(4), 1220-1229. doi:10.1016/j.celrep.2018.03.105
- Oh, T., Fakurnejad, S., Sayegh, E. T., Clark, A. J., Ivan, M. E., Sun, M. Z., . . . Parsa, A. T. (2014). Immunocompetent murine models for the study of glioblastoma immunotherapy. J Transl Med, 12, 107. doi:10.1186/1479-5876-12-107
- Okada, S., Vaeteewoottacharn, K., & Kariya, R. (2019). Application of Highly Immunocompromised Mice for the Establishment of Patient-Derived Xenograft (PDX) Models. Cells, 8(8). doi:10.3390/cells8080889
- Ostrom, Q. T., Cioffi, G., Waite, K., Kruchko, C., & Barnholtz-Sloan, J. S. (2021). CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. Neuro Oncol, 23(12 Suppl 2), iii1-iii105. doi:10.1093/neuonc/noab200
- Parra-Cantu, C., Li, W., Quiñones-Hinojosa, A., & Zhang, Y. S. (2020). 3D bioprinting of glioblastoma models. J 3D Print Med, 4(2), 113-125. doi:10.2217/3dp-2019-0027
- Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J., Angenendt, P., . . . Kinzler, K. W. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science, 321(5897), 1807-1812. doi:10.1126/science.1164382
- Patil, V., Pal, J., & Somasundaram, K. (2015). Elucidating the cancer-specific genetic alteration spectrum of glioblastoma derived cell lines from whole exome and RNA sequencing. Oncotarget, 6(41), 43452-43471. doi:10.18632/oncotarget.6171
- Pellegatta, S., Valletta, L., Corbetta, C., Patane, M., Zucca, I., Riccardi Sirtori, F., . . . Finocchiaro, G. (2015). Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathol Commun, 3, 4. doi:10.1186/s40478-014-0180-0
- Philip, B., Yu, D. X., Silvis, M. R., Shin, C. H., Robinson, J. P., Robinson, G. L., . . . Holmen, S. L. (2018). Mutant IDH1 Promotes Glioma Formation In Vivo. Cell Rep, 23(5), 1553-1564. doi:10.1016/j.celrep.2018.03.133
- Pilkington, G. J., Darling, J. L., Lantos, P. L., & Thomas, D. G. (1983). Cell lines (VMDk) derived from a spontaneous murine astrocytoma. Morphological and immunocytochemical characterization. J Neurol Sci, 62(1-3), 115-139. doi:10.1016/0022-510x(83)90193-4
- Ponten, J. (1975). Neoplastic human glia cells in culture. In J. Fogh (Ed.), Human Tumor Cells in Vitro (pp. 175-206). Boston, MA: Springer US. doi: 10.1007/978-1-4757-1647-4_7
- Ponten, J., & Macintyre, E. H. (1968). Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand, 74(4), 465-486. doi:10.1111/j.1699-0463.1968.tb03502.x
- Post, G. R., & Dawson, G. (1992). Characterization of a cell line derived from a human oligodendroglioma. Mol Chem Neuropathol, 16(3), 303-317. doi:10.1007/BF03159976
- Qiang, L., Yang, Y., Ma, Y. J., Chen, F. H., Zhang, L. B., Liu, W., . . . Guo, Q. L. (2009). Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett, 279(1), 13-21. doi:10.1016/j.canlet.2009.01.016
- Radaelli, E., Ceruti, R., Patton, V., Russo, M., Degrassi, A., Croci, V., . . . Alzani, R. (2009). Immunohistopathological and neuroimaging characterization of murine orthotopic xenograft models of glioblastoma multiforme recapitulating the most salient features of human disease. Histol Histopathol, 24(7), 879-891. doi:10.14670/hh-24.879
- Rajan, R. G., Fernandez-Vega, V., Sperry, J., Nakashima, J., Do, L. H., Andrews, W., . . . Spicer, T. P. (2023). In Vitro and In Vivo Drug-Response Profiling Using Patient-Derived High-Grade Glioma. Cancers (Basel), 15(13). doi:10.3390/cancers15133289
- Rankin, S. L., Zhu, G., & Baker, S. J. (2012). Review: insights gained from modelling high-grade glioma in the mouse. Neuropathol Appl Neurobiol, 38(3), 254-270. doi:10.1111/j.1365-2990.2011.01231.x
- Ratliff, M., Kim, H., Qi, H., Kim, M., Ku, B., Azorin, D. D., . . . Kwon, Y.-J. (2022). Patient-Derived Tumor Organoids for Guidance of Personalized Drug Therapies in Recurrent Glioblastoma. International Journal of Molecular Sciences, 23(12). doi:10.3390/ijms23126572
- Reitman, Z. J., Jin, G., Karoly, E. D., Spasojevic, I., Yang, J., Kinzler, K. W., . . . Yan, H. (2011). Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci U S A, 108(8), 3270-3275. doi:10.1073/pnas.1019393108
- Ren, A. L., Wu, J. Y., Lee, S. Y., & Lim, M. (2023). Translational Models in Glioma Immunotherapy Research. Curr Oncol, 30(6), 5704-5718. doi:10.3390/curroncol30060428
- Riva, M., Wouters, R., Sterpin, E., Giovannoni, R., Boon, L., Himmelreich, U., . . . Coosemans, A. (2021). Radiotherapy, Temozolomide, and Antiprogrammed Cell Death Protein 1 Treatments Modulate the Immune Microenvironment in Experimental High-Grade Glioma. Neurosurgery, 88(2), E205-e215. doi:10.1093/neuros/nyaa421
- Ruiz-Garcia, H., Alvarado-Estrada, K., Schiapparelli, P., Quinones-Hinojosa, A., & Trifiletti, D. M. (2020). Engineering Three-Dimensional Tumor Models to Study Glioma Cancer Stem Cells and Tumor Microenvironment. Front Cell Neurosci, 14, 558381. doi:10.3389/fncel.2020.558381
- Ryu, C. H., Yoon, W. S., Park, K. Y., Kim, S. M., Lim, J. Y., Woo, J. S., . . . Jeun, S. S. (2012). Valproic acid downregulates the expression of MGMT and sensitizes temozolomide-resistant glioma cells. J Biomed Biotechnol, 2012, 987495. doi:10.1155/2012/987495
- Sampson, J. H., Ashley, D. M., Archer, G. E., Fuchs, H. E., Dranoff, G., Hale, L. P., & Bigner, D. D. (1997). Characterization of a spontaneous murine astrocytoma and abrogation of its tumorigenicity by cytokine secretion. Neurosurgery, 41(6), 1365-1372; discussion 1372-1363. doi:10.1097/00006123-199712000-00024
- Schulz, J. A., Rodgers, L. T., Kryscio, R. J., Hartz, A. M. S., & Bauer, B. (2022). Characterization and comparison of human glioblastoma models. BMC Cancer, 22(1), 844. doi:10.1186/s12885-022-09910-9
- Seligman, A. M., Shear, M. J., & Alexander, L. (1939). Studies in carcinogenesis: VIII. Experimental production of brain tumors in mice with methylcholanthrene. Am J Cancer Res, 37(3), 364-395. doi: 10.1158/ajc.1939.364
- Serano, R. D., Pegram, C. N., & Bigner, D. D. (1980). Tumorigenic cell culture lines from a spontaneous VM/Dk murine astrocytoma (SMA). Acta Neuropathol, 51(1), 53-64. doi:10.1007/bf00688850
- Seyfried, T. N., el-Abbadi, M., & Roy, M. L. (1992). Ganglioside distribution in murine neural tumors. Mol Chem Neuropathol, 17(2), 147-167. doi:10.1007/BF03159989
- Seyfried, T. N., & Mukherjee, P. (2010). Ganglioside GM3 Is Antiangiogenic in Malignant Brain Cancer. J Oncol, 2010, 961243. doi:10.1155/2010/961243
- Shelton, L. M., Mukherjee, P., Huysentruyt, L. C., Urits, I., Rosenberg, J. A., & Seyfried, T. N. (2010). A novel pre-clinical in vivo mouse model for malignant brain tumor growth and invasion. J Neurooncol, 99(2), 165-176. doi:10.1007/s11060-010-0115-y
- Shi, J., Dong, X., Han, W., Zhou, P., Liu, L., Wang, H., . . . Dong, J. (2022). Molecular characteristics of single patient-derived glioma stem-like cells from primary and recurrent glioblastoma. Anticancer Drugs, 33(1), e381-e388. doi:10.1097/CAD.0000000000001217
- Shukla, P., Yeleswarapu, S., Heinrich, M. A., Prakash, J., & Pati, F. (2022). Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling. Biofabrication, 14(3). doi:10.1088/1758-5090/ac6d11
- Silginer, M., Papa, E., Szabó, E., Vasella, F., Pruschy, M., Stroh, C., . . . Weller, M. (2023). Immunological and tumor-intrinsic mechanisms mediate the synergistic growth suppression of experimental glioblastoma by radiotherapy and MET inhibition. Acta Neuropathol Commun, 11(1), 41. doi:10.1186/s40478-023-01527-8
- Stringer, B. W., Day, B. W., D'Souza, R. C. J., Jamieson, P. R., Ensbey, K. S., Bruce, Z. C., . . . Boyd, A. W. (2019). A reference collection of patient-derived cell line and xenograft models of proneural, classical and mesenchymal glioblastoma. Sci Rep, 9(1), 4902. doi:10.1038/s41598-019-41277-z
- Stylli, S. S., Luwor, R. B., Ware, T. M., Tan, F., & Kaye, A. H. (2015). Mouse models of glioma. J Clin Neurosci, 22(4), 619-626. doi:10.1016/j.jocn.2014.10.013
- Suva, M. L., & Tirosh, I. (2020). The Glioma Stem Cell Model in the Era of Single-Cell Genomics. Cancer Cell, 37(5), 630-636. doi:10.1016/j.ccell.2020.04.001
- Szatmari, T., Lumniczky, K., Desaknai, S., Trajcevski, S., Hidvegi, E. J., Hamada, H., & Safrany, G. (2006). Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci, 97(6), 546-553. doi:10.1111/j.1349-7006.2006.00208.x
- Tang, L. W., Mallela, A. N., Deng, H., Richardson, T. E., Hervey-Jumper, S. L., McBrayer, S. K., & Abdullah, K. G. (2023). Preclinical modeling of lower-grade gliomas. Front Oncol, 13, 1139383. doi:10.3389/fonc.2023.1139383
- Tang, M., Rich, J. N., & Chen, S. (2021). Biomaterials and 3D Bioprinting Strategies to Model Glioblastoma and the Blood-Brain Barrier. Adv Mater, 33(5), e2004776. doi:10.1002/adma.202004776
- Tang, M., Xie, Q., Gimple, R. C., Zhong, Z., Tam, T., Tian, J., . . . Rich, J. N. (2020). Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Res, 30(10), 833-853. doi:10.1038/s41422-020-0338-1
- Torsvik, A., Stieber, D., Enger, P. O., Golebiewska, A., Molven, A., Svendsen, A., . . . Bjerkvig, R. (2014). U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells. Cancer Med, 3(4), 812-824. doi:10.1002/cam4.219
- Van Meir, E. G., Hadjipanayis, C. G., Norden, A. D., Shu, H. K., Wen, P. Y., & Olson, J. J. (2010). Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin, 60(3), 166-193. doi:10.3322/caac.20069
- Vaubel, R. A., Tian, S., Remonde, D., Schroeder, M. A., Mladek, A. C., Kitange, G. J., . . . Sarkaria, J. N. (2020). Genomic and Phenotypic Characterization of a Broad Panel of Patient-Derived Xenografts Reflects the Diversity of Glioblastoma. Clin Cancer Res, 26(5), 1094-1104. doi:10.1158/1078-0432.CCR-19-0909
- Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M. D., . . . Cancer Genome Atlas Research, N. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 17(1), 98-110. doi:10.1016/j.ccr.2009.12.020
- Wachsberger, P. R., Burd, R., Cardi, C., Thakur, M., Daskalakis, C., Holash, J., . . . Dicker, A. P. (2007). VEGF trap in combination with radiotherapy improves tumor control in u87 glioblastoma. Int J Radiat Oncol Biol Phys, 67(5), 1526-1537. doi:10.1016/j.ijrobp.2006.11.011
- Wang, H., Cai, S., Bailey, B. J., Reza Saadatzadeh, M., Ding, J., Tonsing-Carter, E., . . . Pollok, K. E. (2017). Combination therapy in a xenograft model of glioblastoma: enhancement of the antitumor activity of temozolomide by an MDM2 antagonist. J Neurosurg, 126(2), 446-459. doi:10.3171/2016.1.JNS152513
- Wang, X., Dai, X., Zhang, X., Ma, C., Li, X., Xu, T., & Lan, Q. (2019). 3D bioprinted glioma cell-laden scaffolds enriching glioma stem cells via epithelial-mesenchymal transition. J Biomed Mater Res A, 107(2), 383-391. doi:10.1002/jbm.a.36549
- Wang, X., Li, X., Dai, X., Zhang, X., Zhang, J., Xu, T., & Lan, Q. (2018). Bioprinting of glioma stem cells improves their endotheliogenic potential. Colloids Surf B Biointerfaces, 171, 629-637. doi:10.1016/j.colsurfb.2018.08.006
- Wang, X., Li, X., Ding, J., Long, X., Zhang, H., Zhang, X., . . . Xu, T. (2021). 3D bioprinted glioma microenvironment for glioma vascularization. J Biomed Mater Res A, 109(6), 915-925. doi:10.1002/jbm.a.37082
- Wang, X. W., Labussiere, M., Valable, S., Peres, E. A., Guillamo, J. S., Bernaudin, M., & Sanson, M. (2014). IDH1(R132H) mutation increases U87 glioma cell sensitivity to radiation therapy in hypoxia. Biomed Res Int, 2014, 198697. doi:10.1155/2014/198697
- Wei, J., Chen, P., Gupta, P., Ott, M., Zamler, D., Kassab, C., . . . Heimberger, A. B. (2020). Immune biology of glioma-associated macrophages and microglia: functional and therapeutic implications. Neuro Oncol, 22(2), 180-194. doi:10.1093/neuonc/noz212
- Weller, M., Wick, W., Aldape, K., Brada, M., Berger, M., Pfister, S. M., . . . Reifenberger, G. (2015). Glioma. Nat Rev Dis Primers, 1, 15017. doi:10.1038/nrdp.2015.17
- Wu, A., Oh, S., Wiesner, S. M., Ericson, K., Chen, L., Hall, W. A., . . . Ohlfest, J. R. (2008). Persistence of CD133+ cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties. Stem Cells Dev, 17(1), 173-184. doi:10.1089/scd.2007.0133
- Wu, B. X., Wu, Z., Hou, Y. Y., Fang, Z. X., Deng, Y., Wu, H. T., & Liu, J. (2023). Application of three-dimensional (3D) bioprinting in anti-cancer therapy. Heliyon, 9(10), e20475. doi:10.1016/j.heliyon.2023.e20475
- Xu, C., Yuan, X., Hou, P., Li, Z., Wang, C., Fang, C., & Tan, Y. (2023). Development of glioblastoma organoids and their applications in personalized therapy. Cancer Biol Med, 20(5), 353-368. doi:10.20892/j.issn.2095-3941.2023.0061
- Xu, X., Li, L., Luo, L., Shu, L., Si, X., Chen, Z., . . . Ke, Y. (2021). Opportunities and challenges of glioma organoids. Cell Commun Signal, 19(1), 102. doi:10.1186/s12964-021-00777-0
- Yi, H. G., Jeong, Y. H., Kim, Y., Choi, Y. J., Moon, H. E., Park, S. H., . . . Cho, D. W. (2019). A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat Biomed Eng, 3(7), 509-519. doi:10.1038/s41551-019-0363-x
- Yoshida, G. J. (2020). Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol, 13(1), 4. doi:10.1186/s13045-019-0829-z
- Yu, S. C., Ping, Y. F., Yi, L., Zhou, Z. H., Chen, J. H., Yao, X. H., . . . Bian, X. W. (2008). Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett, 265(1), 124-134. doi:10.1016/j.canlet.2008.02.010
- Zagzag, D., Amirnovin, R., Greco, M. A., Yee, H., Holash, J., Wiegand, S. J., . . . Grumet, M. (2000). Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest, 80(6), 837-849. doi:10.1038/labinvest.3780088
- Zalles, M., & Towner, R. A. (2021). Pre-Clinical Models and Potential Novel Therapies for Glioblastomas. In W. Debinski (Ed.), Gliomas. Brisbane (AU): Exon Publications. doi:10.36255/exonpublications.gliomas.2021.chapter1
- Zhang, C., Jin, M., Zhao, J., Chen, J., & Jin, W. (2020). Organoid models of glioblastoma: advances, applications and challenges. Am J Cancer Res, 10(8), 2242-2257.
- Zimmerman, H. M., & Arnold, H. (1941). Experimental Brain Tumors. I. Tumors Produced with Methylcholanthrene. Cancer Res, 1(12), 919–938.
How to Cite
How to Cite
Downloads
Article Details
Most Read This Month
License
Copyright (c) 2023 Diya Zhang, Yunfan Li, Yucheng Wang, Rui Ju , Lei Guo
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.