Skip to main content Skip to main navigation menu Skip to site footer

The role of TrkB receptor signaling in Alzheimer’s disease

  • Kaiwu He
  • Lulin Nie
  • Zhongliang Dai
  • Shupeng Li
  • Xifei Yang
  • Gongping Liu

Abstract

Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative disorders among the elderly. However, there is no reliable drug for the treatment of AD, which is largely due to the unknown mechanisms and the lack of credible drug targets. Some studies demonstrated the   hat the brain-derived neurotrophic factor/tropomyosin receptor kinase B (BDNF/TrkB) signaling pathway may be a potential therapeutic target for AD. As the most widely studied neurotrophin in the brain, BDNF has a high affinity for TrkB receptor and plays an important role in the regulation of neuronal survival, growth, and synaptic plasticity. Mechanistically, TrkB signaling cascade is considered to be the most important way in which BDNF exerts neuroprotective effects. The expression of TrkB receptor was also found to be significantly decreased in AD patients and AD animals compared with the control, suggesting the involvement of TrkB receptor and TrkB-dependent signal in AD pathogenesis. In this review, we aim to discuss the possible role of TrkB-dependent signal in AD pathogenesis, focusing on three major downstream pathways including phosphatidylinositol-3 kinase/protein kinase B (PI3K/AKT), extracellular regulated kinase (ERK), and phospholipase C-γ1 (PLC-γ1) pathways.

Section

References

  1. Alonso, E., Vale, C., Vieytes, M.R., Botana, L.M., 2013. Translocation of PKC by yessotoxin in an in vitro model of Alzheimer's disease with improvement of tau and beta-amyloid pathology. ACS Chem Neurosci 4(7), 1062-1070.
  2. Amatu, A., Sartore-Bianchi, A., Bencardino, K., Pizzutilo, E.G., Tosi, F., Siena, S., 2019. Tropomyosin receptor kinase (TRK) biology and the role of NTRK gene fusions in cancer. Ann Oncol 30(Suppl_8), viii5-viii15.
  3. Ando, S., Kobayashi, S., Waki, H., Kon, K., Fukui, F., Tadenuma, T., Iwamoto, M., Takeda, Y., Izumiyama, N., Watanabe, K., Nakamura, H., 2002. Animal model of dementia induced by entorhinal synaptic damage and partial restoration of cognitive deficits by BDNF and carnitine. J Neurosci Res 70(3), 519-527.
  4. Arancibia, S., Silhol, M., Mouliere, F., Meffre, J., Hollinger, I., Maurice, T., Tapia-Arancibia, L., 2008. Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol Dis 31(3), 316-326.
  5. Avrutsky, M.I., Troy, C.M., 2021. Caspase-9: A Multimodal Therapeutic Target With Diverse Cellular Expression in Human Disease. Front Pharmacol 12, 701301.
  6. Bartkowska, K., Paquin, A., Gauthier, A.S., Kaplan, D.R., Miller, F.D., 2007. Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development 134(24), 4369-4380.
  7. Beckmann, N.D., Lin, W.J., Wang, M., Cohain, A.T., Charney, A.W., Wang, P., Ma, W., Wang, Y.C., Jiang, C., Audrain, M., Comella, P.H., Fakira, A.K., Hariharan, S.P., Belbin, G.M., Girdhar, K., Levey, A.I., Seyfried, N.T., Dammer, E.B., Duong, D., Lah, J.J., Haure-Mirande, J.V., Shackleton, B., Fanutza, T., Blitzer, R., Kenny, E., Zhu, J., Haroutunian, V., Katsel, P., Gandy, S., Tu, Z., Ehrlich, M.E., Zhang, B., Salton, S.R., Schadt, E.E., 2020. Multiscale causal networks identify VGF as a key regulator of Alzheimer's disease. Nat Commun 11(1), 3942.
  8. Bothwell, M., 2019. Recent advances in understanding context-dependent mechanisms controlling neurotrophin signaling and function. F1000Res 8.
  9. Chen, C., Ahn, E.H., Liu, X., Wang, Z.H., Luo, S., Liao, J., Ye, K., 2021. Optimized TrkB Agonist Ameliorates Alzheimer's Disease Pathologies and Improves Cognitive Functions via Inhibiting Delta-Secretase. ACS Chem Neurosci 12(13), 2448-2461.
  10. Chen, C., Wang, Z., Zhang, Z., Liu, X., Kang, S.S., Zhang, Y., Ye, K., 2018. The prodrug of 7,8-dihydroxyflavone development and therapeutic efficacy for treating Alzheimer's disease. Proc Natl Acad Sci U S A 115(3), 578-583.
  11. Chiang, N.N., Lin, T.H., Teng, Y.S., Sun, Y.C., Chang, K.H., Lin, C.Y., Hsieh-Li, H.M., Su, M.T., Chen, C.M., Lee-Chen, G.J., 2021. Flavones 7,8-DHF, Quercetin, and Apigenin Against Tau Toxicity via Activation of TRKB Signaling in DeltaK280 Tau(RD)-DsRed SH-SY5Y Cells. Front Aging Neurosci 13, 758895.
  12. Chiu, Y.J., Lin, T.H., Chang, K.H., Lin, W., Hsieh-Li, H.M., Su, M.T., Chen, C.M., Sun, Y.C., Lee-Chen, G.J., 2022. Novel TRKB agonists activate TRKB and downstream ERK and AKT signaling to protect Abeta-GFP SH-SY5Y cells against Abeta toxicity. Aging (Albany NY) 14(18), 7568-7586.
  13. Colucci-D'Amato, L., Speranza, L., Volpicelli, F., 2020. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int J Mol Sci 21(20).
  14. Cortese, G.P., Barrientos, R.M., Maier, S.F., Patterson, S.L., 2011. Aging and a peripheral immune challenge interact to reduce mature brain-derived neurotrophic factor and activation of TrkB, PLCgamma1, and ERK in hippocampal synaptoneurosomes. J Neurosci 31(11), 4274-4279.
  15. Du, Q., Zhu, X., Si, J., 2020. Angelica polysaccharide ameliorates memory impairment in Alzheimer's disease rat through activating BDNF/TrkB/CREB pathway. Exp Biol Med (Maywood) 245(1), 1-10.
  16. El Gaamouch, F., Audrain, M., Lin, W.J., Beckmann, N., Jiang, C., Hariharan, S., Heeger, P.S., Schadt, E.E., Gandy, S., Ehrlich, M.E., Salton, S.R., 2020. VGF-derived peptide TLQP-21 modulates microglial function through C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice. Mol Neurodegener 15(1), 4.
  17. Fan, C.H., Lin, C.W., Huang, H.J., Lee-Chen, G.J., Sun, Y.C., Lin, W., Chen, C.M., Chang, K.H., Su, M.T., Hsieh-Li, H.M., 2020. LMDS-1, a potential TrkB receptor agonist provides a safe and neurotrophic effect for early-phase Alzheimer's disease. Psychopharmacology (Berl) 237(10), 3173-3190.
  18. Ferrer, I., Marin, C., Rey, M.J., Ribalta, T., Goutan, E., Blanco, R., Tolosa, E., Marti, E., 1999. BDNF and full-length and truncated TrkB expression in Alzheimer disease. Implications in therapeutic strategies. J Neuropathol Exp Neurol 58(7), 729-739.
  19. Gabbouj, S., Ryhanen, S., Marttinen, M., Wittrahm, R., Takalo, M., Kemppainen, S., Martiskainen, H., Tanila, H., Haapasalo, A., Hiltunen, M., Natunen, T., 2019. Altered Insulin Signaling in Alzheimer's Disease Brain - Special Emphasis on PI3K-Akt Pathway. Front Neurosci 13, 629.
  20. Gupta, V.K., You, Y., Gupta, V.B., Klistorner, A., Graham, S.L., 2013. TrkB receptor signalling: implications in neurodegenerative, psychiatric and proliferative disorders. Int J Mol Sci 14(5), 10122-10142.
  21. Hang, P.Z., Zhu, H., Li, P.F., Liu, J., Ge, F.Q., Zhao, J., Du, Z.M., 2021. The Emerging Role of BDNF/TrkB Signaling in Cardiovascular Diseases. Life (Basel) 11(1).
  22. Ikram, M., Jo, M.H., Choe, K., Khan, A., Ahmad, S., Saeed, K., Kim, M.W., Kim, M.O., 2021. Cycloastragenol, a Triterpenoid Saponin, Regulates Oxidative Stress, Neurotrophic Dysfunctions, Neuroinflammation and Apoptotic Cell Death in Neurodegenerative Conditions. Cells 10(10).
  23. Jang, H.J., Yang, Y.R., Kim, J.K., Choi, J.H., Seo, Y.K., Lee, Y.H., Lee, J.E., Ryu, S.H., Suh, P.G., 2013. Phospholipase C-gamma1 involved in brain disorders. Adv Biol Regul 53(1), 51-62.
  24. Kanno, T., Tsuchiya, A., Tanaka, A., Nishizaki, T., 2016. Combination of PKCepsilon Activation and PTP1B Inhibition Effectively Suppresses Abeta-Induced GSK-3beta Activation and Tau Phosphorylation. Mol Neurobiol 53(7), 4787-4797.
  25. Klein, R., Nanduri, V., Jing, S.A., Lamballe, F., Tapley, P., Bryant, S., Cordon-Cardo, C., Jones, K.R., Reichardt, L.F., Barbacid, M., 1991. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell 66(2), 395-403.
  26. Li, Q., Che, H.X., Wang, C.C., Zhang, L.Y., Ding, L., Xue, C.H., Zhang, T.T., Wang, Y.M., 2019. Cerebrosides from Sea Cucumber Improved Abeta(1-42) -Induced Cognitive Deficiency in a Rat Model of Alzheimer's Disease. Mol Nutr Food Res 63(5), e1800707.
  27. Li, T., Li, X., Huang, X., Yu, H., Li, S., Zhang, Z., Xie, Y., Song, X., Liu, J., Yang, X., Liu, G., 2022. Mitochondriomics reveals the underlying neuroprotective mechanism of TrkB receptor agonist R13 in the 5xFAD mice. Neuropharmacology 204, 108899.
  28. Li, X., Chen, C., Zhan, X., Li, B., Zhang, Z., Li, S., Xie, Y., Song, X., Shen, Y., Liu, J., Liu, P., Liu, G.P., Yang, X., 2021. R13 preserves motor performance in SOD1(G93A) mice by improving mitochondrial function. Theranostics 11(15), 7294-7307.
  29. Lin, T.H., Chang, K.H., Chiu, Y.J., Weng, Z.K., Sun, Y.C., Lin, W., Lee-Chen, G.J., Chen, C.M., 2022. Neuroprotective Action of Coumarin Derivatives through Activation of TRKB-CREB-BDNF Pathway and Reduction of Caspase Activity in Neuronal Cells Expressing Pro-Aggregated Tau Protein. Int J Mol Sci 23(21).
  30. Long, H.Z., Cheng, Y., Zhou, Z.W., Luo, H.Y., Wen, D.D., Gao, L.C., 2021. PI3K/AKT Signal Pathway: A Target of Natural Products in the Prevention and Treatment of Alzheimer's Disease and Parkinson's Disease. Front Pharmacol 12, 648636.
  31. Lu, B., Nagappan, G., Lu, Y., 2014. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol 220, 223-250.
  32. Lucke-Wold, B., Seidel, K., Udo, R., Omalu, B., Ornstein, M., Nolan, R., Rosen, C., Ross, J., 2017. Role of Tau Acetylation in Alzheimer's Disease and Chronic Traumatic Encephalopathy: The Way Forward for Successful Treatment. J Neurol Neurosurg 4(2).
  33. Lucke-Wold, B.P., Turner, R.C., Logsdon, A.F., Simpkins, J.W., Alkon, D.L., Smith, K.E., Chen, Y.W., Tan, Z., Huber, J.D., Rosen, C.L., 2015. Common mechanisms of Alzheimer's disease and ischemic stroke: the role of protein kinase C in the progression of age-related neurodegeneration. J Alzheimers Dis 43(3), 711-724.
  34. Minichiello, L., 2009. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10(12), 850-860.
  35. Nagahara, A.H., Merrill, D.A., Coppola, G., Tsukada, S., Schroeder, B.E., Shaked, G.M., Wang, L., Blesch, A., Kim, A., Conner, J.M., Rockenstein, E., Chao, M.V., Koo, E.H., Geschwind, D., Masliah, E., Chiba, A.A., Tuszynski, M.H., 2009. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nat Med 15(3), 331-337.
  36. Nakagawara, A., Liu, X.G., Ikegaki, N., White, P.S., Yamashiro, D.J., Nycum, L.M., Biegel, J.A., Brodeur, G.M., 1995. Cloning and chromosomal localization of the human TRK-B tyrosine kinase receptor gene (NTRK2). Genomics 25(2), 538-546.
  37. Nikoletopoulou, V., Sidiropoulou, K., Kallergi, E., Dalezios, Y., Tavernarakis, N., 2017. Modulation of Autophagy by BDNF Underlies Synaptic Plasticity. Cell Metab 26(1), 230-242 e235.
  38. Numakawa, T., Odaka, H., 2021. Brain-Derived Neurotrophic Factor Signaling in the Pathophysiology of Alzheimer's Disease: Beneficial Effects of Flavonoids for Neuroprotection. Int J Mol Sci 22(11).
  39. O'Mara, S.M., Aggleton, J.P., 2019. Space and Memory (Far) Beyond the Hippocampus: Many Subcortical Structures Also Support Cognitive Mapping and Mnemonic Processing. Front Neural Circuits 13, 52.
  40. Olloquequi, J., Cano, A., Sanchez-Lopez, E., Carrasco, M., Verdaguer, E., Fortuna, A., Folch, J., Bullo, M., Auladell, C., Camins, A., Ettcheto, M., 2022. Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders. Biomed Pharmacother 155, 113709.
  41. Pang, P.T., Lu, B., 2004. Regulation of late-phase LTP and long-term memory in normal and aging hippocampus: role of secreted proteins tPA and BDNF. Ageing Res Rev 3(4), 407-430.
  42. Peng, S., Wuu, J., Mufson, E.J., Fahnestock, M., 2005. Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer's disease. J Neurochem 93(6), 1412-1421.
  43. Saba, J., Lopez Couselo, F., Turati, J., Carniglia, L., Durand, D., de Laurentiis, A., Lasaga, M., Caruso, C., 2020. Astrocytes from cortex and striatum show differential responses to mitochondrial toxin and BDNF: implications for protection of striatal neurons expressing mutant huntingtin. J Neuroinflammation 17(1), 290.
  44. Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chetelat, G., Teunissen, C.E., Cummings, J., van der Flier, W.M., 2021. Alzheimer's disease. Lancet 397(10284), 1577-1590.
  45. Shimohama, S., Matsushima, H., Fujimoto, S., Takenawa, T., Taniguchi, T., Kameyama, M., Kimura, J., 1995. Differential involvement of phospholipase C isozymes in Alzheimer's disease. Gerontology 41 Suppl 1, 13-19.
  46. Sinsky, J., Pichlerova, K., Hanes, J., 2021. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 22(17).
  47. Sriram, S., Mehkri, Y., Quintin, S., Lucke-Wold, B., 2022. Shared pathophysiology: Understanding stroke and Alzheimer's disease. Clin Neurol Neurosurg 218, 107306.
  48. Stoleru, B., Popescu, A.M., Tache, D.E., Neamtu, O.M., Emami, G., Tataranu, L.G., Buteica, A.S., Dricu, A., Purcaru, S.O., 2013. Tropomyosin-receptor-kinases signaling in the nervous system. Maedica (Bucur) 8(1), 43-48.
  49. Strohmaier, C., Carter, B.D., Urfer, R., Barde, Y.A., Dechant, G., 1996. A splice variant of the neurotrophin receptor trkB with increased specificity for brain-derived neurotrophic factor. EMBO J 15(13), 3332-3337.
  50. Sun, M.K., Alkon, D.L., 2012. Activation of protein kinase C isozymes for the treatment of dementias. Adv Pharmacol 64, 273-302.
  51. Sun, X.Y., Tuo, Q.Z., Liuyang, Z.Y., Xie, A.J., Feng, X.L., Yan, X., Qiu, M., Li, S., Wang, X.L., Cao, F.Y., Wang, X.C., Wang, J.Z., Liu, R., 2016. Extrasynaptic NMDA receptor-induced tau overexpression mediates neuronal death through suppressing survival signaling ERK phosphorylation. Cell Death Dis 7(11), e2449.
  52. Valent, A., Danglot, G., Bernheim, A., 1997. Mapping of the tyrosine kinase receptors trkA (NTRK1), trkB (NTRK2) and trkC(NTRK3) to human chromosomes 1q22, 9q22 and 15q25 by fluorescence in situ hybridization. Eur J Hum Genet 5(2), 102-104.
  53. Valle-Leija, P., Cancino-Rodezno, A., Sanchez-Tafolla, B.M., Arias, E., Elinos, D., Feria, J., Zetina, M.E., Morales, M.A., Cifuentes, F., 2017. Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion. Front Physiol 8, 474.
  54. Wang, H., Li, Z.W., Ou, Q., Wu, X., Nagasaka, M., Shao, Y., Ou, S.I., Yang, Y., 2022. NTRK fusion positive colorectal cancer is a unique subset of CRC with high TMB and microsatellite instability. Cancer Med 11(13), 2541-2549.
  55. Wang, H., Xu, J., Lazarovici, P., Quirion, R., Zheng, W., 2018. cAMP Response Element-Binding Protein (CREB): A Possible Signaling Molecule Link in the Pathophysiology of Schizophrenia. Front Mol Neurosci 11, 255.
  56. Wang, N., Liu, X., Li, X.T., Li, X.X., Ma, W., Xu, Y.M., Liu, Y., Gao, Q., Yang, T., Wang, H., Peng, Y., Zhu, X.F., Guan, Y.Z., 2021. 7,8-Dihydroxyflavone Alleviates Anxiety-Like Behavior Induced by Chronic Alcohol Exposure in Mice Involving Tropomyosin-Related Kinase B in the Amygdala. Mol Neurobiol 58(1), 92-105.
  57. Wang, S., Yao, H., Xu, Y., Hao, R., Zhang, W., Liu, H., Huang, Y., Guo, W., Lu, B., 2020. Therapeutic potential of a TrkB agonistic antibody for Alzheimer's disease. Theranostics 10(15), 6854-6874.
  58. Weier, H.U., Rhein, A.P., Shadravan, F., Collins, C., Polikoff, D., 1995. Rapid physical mapping of the human trk protooncogene (NTRK1) to human chromosome 1q21-q22 by P1 clone selection, fluorescence in situ hybridization (FISH), and computer-assisted microscopy. Genomics 26(2), 390-393.
  59. Wu, D., Chen, Q., Chen, X., Han, F., Chen, Z., Wang, Y., 2023. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther 8(1), 217.
  60. Wu, J.J., Yang, Y., Wan, Y., Xia, J., Xu, J.F., Zhang, L., Liu, D., Chen, L., Tang, F., Ao, H., Peng, C., 2022. New insights into the role and mechanisms of ginsenoside Rg1 in the management of Alzheimer's disease. Biomed Pharmacother 152, 113207.
  61. Wu, Y., Luo, X., Liu, X., Liu, D., Wang, X., Guo, Z., Zhu, L., Tian, Q., Yang, X., Wang, J.Z., 2015. Intraperitoneal Administration of a Novel TAT-BDNF Peptide Ameliorates Cognitive Impairments via Modulating Multiple Pathways in Two Alzheimer's Rodent Models. Sci Rep 5, 15032.
  62. Xia, Y., Wang, Z.H., Liu, P., Edgington-Mitchell, L., Liu, X., Wang, X.C., Ye, K., 2021. TrkB receptor cleavage by delta-secretase abolishes its phosphorylation of APP, aggravating Alzheimer's disease pathologies. Mol Psychiatry 26(7), 2943-2963.
  63. Xiang, J., Wang, Z.H., Ahn, E.H., Liu, X., Yu, S.P., Manfredsson, F.P., Sandoval, I.M., Ju, G., Wu, S., Ye, K., 2019. Delta-secretase-cleaved Tau antagonizes TrkB neurotrophic signalings, mediating Alzheimer's disease pathologies. Proc Natl Acad Sci U S A 116(18), 9094-9102.
  64. Yang, S.T., Hung, H.Y., Ro, L.S., Liao, M.F., Amstislavskaya, T.G., Tikhonova, M.A., Yang, Y.L., Lu, K.T., 2021. Chronic Administration of 7,8-DHF Lessens the Depression-like Behavior of Juvenile Mild Traumatic Brain Injury Treated Rats at Their Adult Age. Pharmaceutics 13(12).
  65. Yang, Y.R., Jung, J.H., Kim, S.J., Hamada, K., Suzuki, A., Kim, H.J., Lee, J.H., Kwon, O.B., Lee, Y.K., Kim, J., Kim, E.K., Jang, H.J., Kang, D.S., Choi, J.S., Lee, C.J., Marshall, J., Koh, H.Y., Kim, C.J., Seok, H., Kim, S.H., Choi, J.H., Choi, Y.B., Cocco, L., Ryu, S.H., Kim, J.H., Suh, P.G., 2017. Forebrain-specific ablation of phospholipase Cgamma1 causes manic-like behavior. Mol Psychiatry 22(10), 1473-1482.
  66. Zhang, B., Zhao, J., Wang, Z., Xu, L., Liu, A., Du, G., 2020. DL0410 attenuates oxidative stress and neuroinflammation via BDNF/TrkB/ERK/CREB and Nrf2/HO-1 activation. Int Immunopharmacol 86, 106729.
  67. Zhang, J., Wang, J., Zhou, G.S., Tan, Y.J., Tao, H.J., Chen, J.Q., Pu, Z.J., Ma, J.Y., She, W., Kang, A., Zhu, Y., Liu, P., Zhu, Z.H., Shi, X.Q., Tang, Y.P., Duan, J.A., 2019. Studies of the Anti-amnesic Effects and Mechanisms of Single and Combined Use of Donepezil and Ginkgo Ketoester Tablet on Scopolamine-Induced Memory Impairment in Mice. Oxid Med Cell Longev 2019, 8636835.
  68. Zhang, T., Chen, D., Lee, T.H., 2019. Phosphorylation Signaling in APP Processing in Alzheimer's Disease. Int J Mol Sci 21(1).
  69. Zhao, Y., Luo, D., Ning, Z., Rong, J., Lao, L., 2019. Electro-Acupuncture Ameliorated MPTP-Induced Parkinsonism in Mice via TrkB Neurotrophic Signaling. Front Neurosci 13, 496.

How to Cite

“The Role of TrkB Receptor Signaling in Alzheimer’s Disease”. Human Brain, vol. 2, no. 4, Dec. 2023, https://doi.org/10.37819/hb.4.1788.

How to Cite

“The Role of TrkB Receptor Signaling in Alzheimer’s Disease”. Human Brain, vol. 2, no. 4, Dec. 2023, https://doi.org/10.37819/hb.4.1788.

Funding data

HTML
181

Total
119

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2023 Kaiwu He, Lulin Nie , Zhongliang Dai, Shupeng Li, Xifei Yang, Gongping Liu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.