Skip to main content Skip to main navigation menu Skip to site footer

A critical review on cancer vaccines: a promising immunotherapy

  • Jaya Verma
  • Caaisha Warsame
  • Saurav Goel

Abstract

Cancer vaccines are a type of immunotherapy that can assist in educating the immune system about what cancer cells "look like" so that it can practively destroy them. A lack of an efficient adjuvant and insufficient efficacy hurdles the development of cancer vaccines based on tumor-associated antigens. To improve the efficacy of vaccines, a genetically engineered method was reviewed to achieving the codelivery of antigen and adjuvant to enhance immune responses. For more than 25 years, the development of cancer vaccines has been at the forefront of cancer research. The main emphasis has been on delivery strategies used to promote strong and long-lasting immune responses. Recent developments have made it possible to advance the engineering of therapeutic cancer vaccines. Target selection, vaccine development and techniques for overturning immunosuppressive systems used by malignancies have all made significant strides. To accelerate future developments and provide guidance to the prospective participants in this field, this commentary-style review provides an overview of recent developments in therapeutic, HPV and DNA cancer vaccines especially focusing on modeling and simulation advances to date.

Section

References

  1. Abd El Fattah, Y. K., Abulsoud, A. I., AbdelHamid, S. G., & Hamdy, N. M. (2022). Interactome battling of lncRNA CCDC144NL-AS1: Its role in the emergence and ferocity of cancer and beyond. International Journal of Biological Macromolecules.
  2. Abdou, Y., Goudarzi, A., Yu, J. X., Upadhaya, S., Vincent, B., & Carey, L. A. (2022). Immunotherapy in triple negative breast cancer: beyond checkpoint inhibitors. npj Breast Cancer, 8(1), 1-10.
  3. Abulwerdi, F. A., Xu, W., Ageeli, A. A., Yonkunas, M. J., Arun, G., Nam, H., . . . Baird, N. (2019). Selective small-molecule targeting of a triple helix encoded by the long noncoding RNA, MALAT1. ACS chemical biology, 14(2), 223-235.
  4. Apostolopoulos, V. (2019). Cancer vaccines: research and applications. In (Vol. 11, pp. 1041): MDPI.
  5. Ascierto, M. L., Kmieciak, M., Idowu, M. O., Manjili, R., Zhao, Y., Grimes, M., . . . Wang, X.-Y. (2012). A signature of immune function genes associated with recurrence-free survival in breast cancer patients. Breast cancer research and treatment, 131(3), 871-880.
  6. Avogadri, F., Merghoub, T., Maughan, M. F., Hirschhorn-Cymerman, D., Morris, J., Ritter, E., . . . Wolchok, J. D. (2010). Alphavirus replicon particles expressing TRP-2 provide potent therapeutic effect on melanoma through activation of humoral and cellular immunity. PloS one, 5(9), e12670.
  7. Baez, J., & Kuang, Y. (2016). Mathematical models of androgen resistance in prostate cancer patients under intermittent androgen suppression therapy. Applied Sciences, 6(11), 352.
  8. Beavis, P. A., Slaney, C. Y., Kershaw, M. H., Gyorki, D., Neeson, P. J., & Darcy, P. K. (2016). Reprogramming the tumor microenvironment to enhance adoptive cellular therapy. Paper presented at the Seminars in immunology.
  9. Binkowski, T. A., Marino, S. R., & Joachimiak, A. (2012). Predicting HLA class I non-permissive amino acid residues substitutions.
  10. Blakney, A. K., McKay, P. F., Yus, B. I., Aldon, Y., & Shattock, R. J. (2019). Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA. Gene therapy, 26(9), 363-372.
  11. Bohnsack, M. T., Czaplinski, K., & Görlich, D. (2004). Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. Rna, 10(2), 185-191.
  12. Borst, J., Ahrends, T., Bąbała, N., Melief, C. J., & Kastenmüller, W. (2018). CD4+ T cell help in cancer immunology and immunotherapy. Nature Reviews Immunology, 18(10), 635-647.
  13. Buonaguro, L., & Tagliamonte, M. (2020). Selecting target antigens for cancer vaccine development. Vaccines, 8(4), 615.
  14. Camus, M., Tosolini, M., Mlecnik, B., Kirilovsky, A., Berger, A., Costes, A., . . . Trajanoski, Z. (2009). Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer research, 69(6), 2685-2693.
  15. Capasso, C., Magarkar, A., Cervera-Carrascon, V., Fusciello, M., Feola, S., Muller, M., . . . Pastore, L. (2017). A novel in silico framework to improve MHC-I epitopes and break the tolerance to melanoma. Oncoimmunology, 6(9), e1319028.
  16. Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M., Maeda, N., . . . Wells, C. (2005). The transcriptional landscape of the mammalian genome. Science, 309(5740), 1559-1563.
  17. Cartellieri, M., Bachmann, M., Feldmann, A., Bippes, C., Stamova, S., Wehner, R., . . . Schmitz, M. (2010). Chimeric antigen receptor-engineered T cells for immunotherapy of cancer. Journal of Biomedicine and Biotechnology, 2010.
  18. Carthew, R. W., & Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136(4), 642-655.
  19. Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: the cancer-immunity cycle. immunity, 39(1), 1-10.
  20. Chen, G., Xiong, W., Gu, Z., Gao, Y., Hou, J., Long, L., . . . Xu, Q. (2022). Mannosylated engineered trichosanthin-legumain protein vaccine hydrogel for breast cancer immunotherapy. International Journal of Biological Macromolecules, 223, 1485-1494.
  21. Chudnovskiy, A., Pasqual, G., & Victora, G. D. (2019). Studying interactions between dendritic cells and T cells in vivo. Current opinion in immunology, 58, 24-30.
  22. Chugh, N., Sharma, D. K., Singhal, R., Jain, S., Srikanth, P., Kumar, A., & Aggarwal, A. (2020). Blockchain-based Decentralized Application (DApp) Design, Implementation, and Analysis With Healthcare 4.0 Trends. Paper presented at the Basic & Clinical Pharmacology & Toxicology.
  23. Colmenero, P., Chen, M., Castaños‐Velez, E., Liljeström, P., & Jondal, M. (2002). Immunotherapy with recombinant SFV‐replicons expressing the P815A tumor antigen or IL‐12 induces tumor regression. International journal of cancer, 98(4), 554-560.
  24. Coulie, P. G., Van den Eynde, B. J., Van Der Bruggen, P., & Boon, T. (2014). Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nature Reviews Cancer, 14(2), 135-146.
  25. Crosby, E. J., Gwin, W., Blackwell, K., Marcom, P. K., Chang, S., Maecker, H. T., . . . Rogatko, A. (2019). Vaccine-induced memory CD8+ T cells provide clinical benefit in HER2 expressing breast cancer: a mouse to human translational study. Clinical Cancer Research, 25(9), 2725-2736.
  26. Daemen, T., Regts, J., Holtrop, M., & Wilschut, J. (2002). Immunization strategy against cervical cancer involving an alphavirus vector expressing high levels of a stable fusion protein of human papillomavirus 16 E6 and E7. Gene therapy, 9(2), 85-94.
  27. Dao, T., Korontsvit, T., Zakhaleva, V., Jarvis, C., Mondello, P., Oh, C., & Scheinberg, D. A. (2017). An immunogenic WT1-derived peptide that induces T cell response in the context of HLA-A* 02: 01 and HLA-A* 24: 02 molecules. Oncoimmunology, 6(2), e1252895.
  28. Di Martino, M. T., Riillo, C., Scionti, F., Grillone, K., Polerà, N., Caracciolo, D., . . . Tassone, P. (2021). miRNAs and lncRNAs as novel therapeutic targets to improve cancer immunotherapy. Cancers, 13(7), 1587.
  29. Dorange, F., Piver, E., Bru, T., Collin, C., Roingeard, P., & Pagès, J. C. (2004). Vesicular stomatitis virus glycoprotein: a transducing coat for SFV‐based RNA vectors. The Journal of Gene Medicine: A cross‐disciplinary journal for research on the science of gene transfer and its clinical applications, 6(9), 1014-1022.
  30. Dyson, J. (2015). T‐cell receptors: Tugging on the anchor for a tighter hold on the tumor‐associated peptide. European journal of immunology, 45(2), 380-382.
  31. Eulalio, A., Huntzinger, E., & Izaurralde, E. (2008). Getting to the root of miRNA-mediated gene silencing. Cell, 132(1), 9-14.
  32. Fan, H., Ge, Y., Ma, X., Li, Z., Shi, L., Lin, L., . . . Yang, L. (2020). Long non-coding RNA CCDC144NL-AS1 sponges miR-143-3p and regulates MAP3K7 by acting as a competing endogenous RNA in gastric cancer. Cell death & disease, 11(7), 1-12.
  33. Fischer, H. P. (2008). Mathematical modeling of complex biological systems: from parts lists to understanding systems behavior. Alcohol Research & Health, 31(1), 49.
  34. Fucikova, J., Kepp, O., Kasikova, L., Petroni, G., Yamazaki, T., Liu, P., . . . Galluzzi, L. (2020). Detection of immunogenic cell death and its relevance for cancer therapy. Cell death & disease, 11(11), 1-13.
  35. Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C., . . . Wind, P. (2006). Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science, 313(5795), 1960-1964.
  36. Geall, A. J., Verma, A., Otten, G. R., Shaw, C. A., Hekele, A., Banerjee, K., . . . Krucker, T. (2012). Nonviral delivery of self-amplifying RNA vaccines. Proceedings of the National Academy of sciences, 109(36), 14604-14609.
  37. Giaccone, G., Bazhenova, L., Nemunaitis, J., Tan, M., Juhász, E., Ramlau, R., . . . Eaton, K. (2015). A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer. European journal of cancer, 51(16), 2321-2329.
  38. Grimmett, E., Al-Share, B., Alkassab, M. B., Zhou, R. W., Desai, A., Rahim, M. M. A., & Woldie, I. (2022). Cancer vaccines: past, present and future; a review article. Discover Oncology, 13(1), 1-17.
  39. Gulley, J. L., Madan, R., & Schlom, J. (2011). Impact of tumour volume on the potential efficacy of therapeutic vaccines. Current oncology, 18(3), 150-157.
  40. Guo, C., Manjili, M. H., Subjeck, J. R., Sarkar, D., Fisher, P. B., & Wang, X.-Y. (2013). Therapeutic cancer vaccines: past, present, and future. Advances in cancer research, 119, 421-475.
  41. Guo, Z. S., Lu, B., Guo, Z., Giehl, E., Feist, M., Dai, E., . . . Liu, Z. (2019). Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. Journal for immunotherapy of cancer, 7(1), 1-21.
  42. Gupta, S. K., Bang, C., & Thum, T. (2010). Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circulation: Cardiovascular Genetics, 3(5), 484-488.
  43. Hall, E., Wodi, A. P., Hamborsky, J., Morelli, V., & Schillie, S. (2021). Epidemiology and prevention of vaccine-preventable diseases. Centers for Disease Control and Prevention. Public Health Foundation. Retrieved January, 4, 2022.
  44. Halle, S., Halle, O., & Förster, R. (2017). Mechanisms and dynamics of T cell-mediated cytotoxicity in vivo. Trends in immunology, 38(6), 432-443.
  45. Hannan, R., Zhang, H., Wallecha, A., Singh, R., Liu, L., Cohen, P., . . . Guha, C. (2012). Combined immunotherapy with Listeria monocytogenes-based PSA vaccine and radiation therapy leads to a therapeutic response in a murine model of prostate cancer. Cancer Immunology, Immunotherapy, 61(12), 2227-2238.
  46. Hashemi, M., Hasani, S., Hajimazdarany, S., Mirmazloomi, S. R., Makvandy, S., Zabihi, A., . . . Tavakolpournegari, A. (2022). Non-coding RNAs targeting notch signaling pathway in cancer: From proliferation to cancer therapy resistance. International Journal of Biological Macromolecules.
  47. Hay, K. A., & Turtle, C. J. (2017). Chimeric antigen receptor (CAR) T cells: lessons learned from targeting of CD19 in B-cell malignancies. Drugs, 77(3), 237-245.
  48. He, J., Guan, J., Liao, S., Wu, Z., Liu, B., Mo, H., & Yuan, Z. (2021). Long noncoding RNA CCDC144NL-AS1 promotes the oncogenicity of osteosarcoma by acting as a molecular sponge for microRNA-490-3p and thereby increasing HMGA2 expression. OncoTargets and therapy, 14, 1.
  49. Hibio, N., Hino, K., Shimizu, E., Nagata, Y., & Ui-Tei, K. (2012). Stability of miRNA 5′ terminal and seed regions is correlated with experimentally observed miRNA-mediated silencing efficacy. Scientific reports, 2(1), 1-10.
  50. Hirata, Y., Akakura, K., Higano, C. S., Bruchovsky, N., & Aihara, K. (2012). Quantitative mathematical modeling of PSA dynamics of prostate cancer patients treated with intermittent androgen suppression. Journal of molecular cell biology, 4(3), 127-132.
  51. Hirata, Y., Bruchovsky, N., & Aihara, K. (2010). Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer. Journal of theoretical biology, 264(2), 517-527.
  52. Hodi, F. S., Mihm, M. C., Soiffer, R. J., Haluska, F. G., Butler, M., Seiden, M. V., . . . Willman, A. (2003). Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proceedings of the National Academy of sciences, 100(8), 4712-4717.
  53. Hollingsworth, R. E., & Jansen, K. (2019). Turning the corner on therapeutic cancer vaccines. npj Vaccines, 4(1), 1-10.
  54. Hu, Z., Ott, P. A., & Wu, C. J. (2018). Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nature Reviews Immunology, 18(3), 168-182.
  55. Hüttenhofer, A., Schattner, P., & Polacek, N. (2005). Non-coding RNAs: hope or hype? TRENDS in Genetics, 21(5), 289-297.
  56. Hutvagner, G., McLachlan, J., Pasquinelli, A. E., Bálint, É., Tuschl, T., & Zamore, P. D. (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293(5531), 834-838.
  57. Igarashi, Y., & Sasada, T. (2020). Cancer vaccines: Toward the next breakthrough in cancer immunotherapy. Journal of Immunology Research, 2020.
  58. Itano, A. A., McSorley, S. J., Reinhardt, R. L., Ehst, B. D., Ingulli, E., Rudensky, A. Y., & Jenkins, M. K. (2003). Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. immunity, 19(1), 47-57.
  59. Ito, N., Takayama‐Ito, M., Yamada, K., Hosokawa, J., Sugiyama, M., & Minamoto, N. (2003). Improved recovery of rabies virus from cloned cDNA using a vaccinia virus‐free reverse genetics system. Microbiology and immunology, 47(8), 613-617.
  60. Jain, H. V., Clinton, S. K., Bhinder, A., & Friedman, A. (2011). Mathematical modeling of prostate cancer progression in response to androgen ablation therapy. Proceedings of the National Academy of sciences, 108(49), 19701-19706.
  61. Kapranov, P., Willingham, A. T., & Gingeras, T. R. (2007). Genome-wide transcription and the implications for genomic organization. Nature Reviews Genetics, 8(6), 413-423.
  62. Kawamata, T., Seitz, H., & Tomari, Y. (2009). Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nature structural & molecular biology, 16(9), 953-960.
  63. Kumar, S., Shuaib, M., Prajapati, K. S., Singh, A. K., Choudhary, P., Singh, S., & Gupta, S. (2022). A candidate triple-negative breast cancer vaccine design by targeting clinically relevant cell surface markers: an integrated immuno and bio-informatics approach. 3 Biotech, 12(3), 1-20.
  64. LaFleur, M. W., Muroyama, Y., Drake, C. G., & Sharpe, A. H. (2018). Inhibitors of the PD-1 pathway in tumor therapy. The Journal of Immunology, 200(2), 375-383.
  65. Lambeck, A. J., Nijman, H. W., Hoogeboom, B. N., Regts, J., de Mare, A., Wilschut, J., & Daemen, T. (2010). Role of T cell competition in the induction of cytotoxic T lymphocyte activity during viral vector-based immunization regimens. Vaccine, 28(26), 4275-4282.
  66. Lambricht, L., Lopes, A., Kos, S., Sersa, G., Préat, V., & Vandermeulen, G. (2016). Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opinion on Drug Delivery, 13(2), 295-310.
  67. Leitner, W. W., Bergmann-Leitner, E. S., Hwang, L. N., & Restifo, N. P. (2006). Type I Interferons are essential for the efficacy of replicase-based DNA vaccines. Vaccine, 24(24), 5110-5118.
  68. Liu, J., Fu, M., Wang, M., Wan, D., Wei, Y., & Wei, X. (2022). Cancer vaccines as promising immuno-therapeutics: platforms and current progress. Journal of Hematology & Oncology, 15(1), 1-26.
  69. Liu, J., Miao, L., Sui, J., Hao, Y., & Huang, G. (2020). Nanoparticle cancer vaccines: Design considerations and recent advances. Asian Journal of Pharmaceutical Sciences, 15(5), 576-590.
  70. Lopes, A., Vandermeulen, G., & Préat, V. (2019). Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. Journal of Experimental & Clinical Cancer Research, 38(1), 1-24.
  71. Lorentzen, C. L., Haanen, J. B., Met, Ö., & Svane, I. M. (2022). Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. The Lancet Oncology, 23(10), e450-e458.
  72. Lundstrom, K. (2018a). Latest development on RNA-based drugs and vaccines. Future science OA, 4(5), FSO300.
  73. Lundstrom, K. (2018b). Self-replicating RNA viruses for RNA therapeutics. Molecules, 23(12), 3310.
  74. Maciag, P. C., Radulovic, S., & Rothman, J. (2009). The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a Phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine, 27(30), 3975-3983.
  75. Madan, R. A., Gulley, J. L., Fojo, T., & Dahut, W. L. (2010). Therapeutic cancer vaccines in prostate cancer: the paradox of improved survival without changes in time to progression. The oncologist, 15(9), 969-975.
  76. Madura, F., Rizkallah, P. J., Holland, C. J., Fuller, A., Bulek, A., Godkin, A. J., . . . Sewell, A. K. (2015). Structural basis for ineffective T‐cell responses to MHC anchor residue‐improved “heteroclitic” peptides. European journal of immunology, 45(2), 584-591.
  77. Maine, C. J., Richard, G., Spasova, D. S., Miyake-Stoner, S. J., Sparks, J., Moise, L., . . . Crouse, J. M. (2021). Self-replicating RNAs drive protective anti-tumor T cell responses to neoantigen vaccine targets in a combinatorial approach. Molecular Therapy, 29(3), 1186-1198.
  78. McCammon, J. A., Gelin, B. R., & Karplus, M. (1977). Dynamics of folded proteins. Nature, 267(5612), 585-590.
  79. Melief, C. J. (2015). Mutation-specific T cells for immunotherapy of gliomas. New England Journal of Medicine, 372(20), 1956-1958.
  80. Miao, L., Zhang, Y., & Huang, L. (2021). mRNA vaccine for cancer immunotherapy. Molecular Cancer, 20(1), 1-23.
  81. Mirjalili, V., & Feig, M. (2013). Protein structure refinement through structure selection and averaging from molecular dynamics ensembles. Journal of chemical theory and computation, 9(2), 1294-1303.
  82. Mittendorf, E. A., Clifton, G. T., Holmes, J. P., Clive, K. S., Patil, R., Benavides, L. C., . . . Ponniah, S. (2012). Clinical trial results of the HER‐2/neu (E75) vaccine to prevent breast cancer recurrence in high‐risk patients: from US Military Cancer Institute Clinical Trials Group Study I‐01 and I‐02. Cancer, 118(10), 2594-2602.
  83. Mittendorf, E. A., Lu, B., Melisko, M., Price Hiller, J., Bondarenko, I., Brunt, A. M., . . . Peoples, G. E. (2019). Efficacy and Safety Analysis of Nelipepimut-S Vaccine to Prevent Breast Cancer Recurrence: A Randomized, Multicenter, Phase III Clinical TrialRandomized Phase III Trial of Nelipepimut-S in Breast Cancer. Clinical Cancer Research, 25(14), 4248-4254.
  84. Mkrtichyan, M., Chong, N., Abu Eid, R., Wallecha, A., Singh, R., Rothman, J., & Khleif, S. N. (2013). Anti-PD-1 antibody significantly increases therapeutic efficacy of Listeria monocytogenes (Lm)-LLO immunotherapy. Journal for immunotherapy of cancer, 1(1), 1-9.
  85. Newman-Toker, D. E., Wang, Z., Zhu, Y., Nassery, N., Tehrani, A. S. S., Schaffer, A. C., . . . Siegal, D. (2021). Rate of diagnostic errors and serious misdiagnosis-related harms for major vascular events, infections, and cancers: toward a national incidence estimate using the “Big Three”. Diagnosis, 8(1), 67-84.
  86. Ni, B., Lin, Z., Zhou, L., Wang, L., Jia, Z., Zhou, W., . . . Wu, Y. (2004). Induction of P815 tumor immunity by DNA-based recombinant Semliki Forest virus or replicon DNA expressing the P1A gene. Cancer Detection and Prevention, 28(6), 418-425.
  87. Niedermaier, T., Gredner, T., Kuznia, S., Schöttker, B., Mons, U., & Brenner, H. (2021). Vitamin D supplementation to the older adult population in Germany has the cost‐saving potential of preventing almost 30 000 cancer deaths per year. Molecular oncology, 15(8), 1986-1994.
  88. Obara, W., Kanehira, M., Katagiri, T., Kato, R., Kato, Y., & Takata, R. (2018). Present status and future perspective of peptide‐based vaccine therapy for urological cancer. Cancer science, 109(3), 550-559.
  89. Oli, A. N., Obialor, W. O., Ifeanyichukwu, M. O., Odimegwu, D. C., Okoyeh, J. N., Emechebe, G. O., . . . Ibeanu, G. C. (2020). Immunoinformatics and vaccine development: an overview. ImmunoTargets and therapy, 9, 13.
  90. Osada, T., Berglund, P., Morse, M. A., Hubby, B., Lewis, W., Niedzwiecki, D., . . . Devi, G. R. (2012). Co-delivery of antigen and IL-12 by Venezuelan equine encephalitis virus replicon particles enhances antigen-specific immune responses and antitumor effects. Cancer Immunology, Immunotherapy, 61(11), 1941-1951.
  91. Ott, P. A., Hu-Lieskovan, S., Chmielowski, B., Govindan, R., Naing, A., Bhardwaj, N., . . . Lin, J. J. (2020). A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell, 183(2), 347-362. e324.
  92. Paavilainen-Mäntymäki, S. P. D. E., & Van Mumford, D. S. J. (2022). Subject International Business Date 30.5. Author Satu Hynninen Number of pages 89+ appendices.
  93. Parvizpour, S., Razmara, J., Pourseif, M. M., & Omidi, Y. (2019). In silico design of a triple-negative breast cancer vaccine by targeting cancer testis antigens. BioImpacts: BI, 9(1), 45.
  94. Radecke, F., Spielhofer, P., Schneider, H., Kaelin, K., Huber, M., Dötsch, C., . . . Billeter, M. (1995). Rescue of measles viruses from cloned DNA. The EMBO journal, 14(23), 5773-5784.
  95. Rafique, W., Khan, M., Sarwar, N., & Dou, W. (2019). A security framework to protect edge supported software defined Internet of Things infrastructure. Paper presented at the International Conference on Collaborative Computing: Networking, Applications and Worksharing.
  96. Rafique, W., Khan, M., Zhao, X., Sarwar, N., & Dou, W. (2019). A blockchain-based framework for information security in intelligent transportation systems. Paper presented at the International Conference on Intelligent Technologies and Applications.
  97. Rajendran Krishnamoorthy, H., & Karuppasamy, R. (2022). Designing a novel SOX9 based multi-epitope vaccine to combat metastatic triple-negative breast cancer using immunoinformatics approach. Molecular diversity, 1-14.
  98. Rasool, R. U., Ahmad, H. F., Rafique, W., Qayyum, A., & Qadir, J. (2022). Quantum computing for healthcare: A review.
  99. Roberts, E. W., Broz, M. L., Binnewies, M., Headley, M. B., Nelson, A. E., Wolf, D. M., . . . Krummel, M. F. (2016). Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer cell, 30(2), 324-336.
  100. Rodriguez Messan, M., Yogurtcu, O. N., McGill, J. R., Nukala, U., Sauna, Z. E., & Yang, H. (2021). Mathematical model of a personalized neoantigen cancer vaccine and the human immune system. PLoS computational biology, 17(9), e1009318.
  101. Ruby, J. G., Jan, C. H., & Bartel, D. P. (2007). Intronic microRNA precursors that bypass Drosha processing. Nature, 448(7149), 83-86.
  102. Sahin, U., Derhovanessian, E., Miller, M., Kloke, B.-P., Simon, P., Löwer, M., . . . Schrörs, B. (2017). Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 547(7662), 222-226.
  103. Sahin, U., & Türeci, Ö. (2018). Personalized vaccines for cancer immunotherapy. Science, 359(6382), 1355-1360.
  104. Saini, H. K., Griffiths-Jones, S., & Enright, A. J. (2007). Genomic analysis of human microRNA transcripts. Proceedings of the National Academy of Sciences, 104(45), 17719-17724.
  105. Salim, S. S., Mureithi, E., Shaban, N., & Malinzi, J. (2021). Mathematical modelling of the dynamics of prostate cancer with a curative vaccine. Scientific African, 11, e00715.
  106. Sallusto, F., Cella, M., Danieli, C., & Lanzavecchia, A. (1995). Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. The Journal of experimental medicine, 182(2), 389-400.
  107. Samad, A., Meghla, N. S., Nain, Z., Karpiński, T. M., & Rahman, M. (2022). Immune epitopes identification and designing of a multi-epitope vaccine against bovine leukemia virus: a molecular dynamics and immune simulation approaches. Cancer Immunology, Immunotherapy, 1-14.
  108. Sautès-Fridman, C., Petitprez, F., Calderaro, J., & Fridman, W. H. (2019). Tertiary lymphoid structures in the era of cancer immunotherapy. Nature Reviews Cancer, 19(6), 307-325.
  109. Saxena, M., van der Burg, S. H., Melief, C. J., & Bhardwaj, N. (2021). Therapeutic cancer vaccines. Nature Reviews Cancer, 21(6), 360-378.
  110. Schlom, J. (2012). Therapeutic cancer vaccines: current status and moving forward. Journal of the National Cancer Institute, 104(8), 599-613.
  111. Schwartzentruber, D. J., Lawson, D. H., Richards, J. M., Conry, R. M., Miller, D. M., Treisman, J., . . . Pockaj, B. (2011). gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. New England Journal of Medicine, 364(22), 2119-2127.
  112. Seal, R. L., Chen, L. L., Griffiths‐Jones, S., Lowe, T. M., Mathews, M. B., O'Reilly, D., . . . Wolin, S. L. (2020). A guide to naming human non‐coding RNA genes. The EMBO journal, 39(6), e103777.
  113. Shahabi, V., Seavey, M., Maciag, P., Rivera, S., & Wallecha, A. (2011). Development of a live and highly attenuated Listeria monocytogenes-based vaccine for the treatment of Her2/neu-overexpressing cancers in human. Cancer gene therapy, 18(1), 53-62.
  114. Singh, J., Bowne, W. B., & Snook, A. E. (2021). Cancer Vaccines and Immunotherapy for Tumor Prevention and Treatment. In (Vol. 9, pp. 1298): MDPI.
  115. Sosman, J. A., Carrillo, C., Urba, W. J., Flaherty, L., Atkins, M. B., Clark, J. I., . . . Gollob, J. (2008). Three phase II cytokine working group trials of gp100 (210M) peptide plus high-dose interleukin-2 in patients with HLA-A2–positive advanced melanoma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 26(14), 2292.
  116. Stein, W. D., Gulley, J. L., Schlom, J., Madan, R. A., Dahut, W., Figg, W. D., . . . Bates, S. E. (2011). Tumor Regression and Growth Rates Determined in Five Intramural NCI Prostate Cancer Trials: The Growth Rate Constant as an Indicator of Therapeutic EfficacyRetrospective Analysis of NCI Prostate Cancer Trials. Clinical Cancer Research, 17(4), 907-917.
  117. Strauss, J. H., & Strauss, E. G. (1994). The alphaviruses: gene expression, replication, and evolution. Microbiological reviews, 58(3), 491-562.
  118. Terabe, M., Ambrosino, E., Takaku, S., O'Konek, J. J., Venzon, D., Lonning, S., . . . Berzofsky, J. A. (2009). Synergistic Enhancement of CD8+ T Cell–Mediated Tumor Vaccine Efficacy by an Anti–Transforming Growth Factor-β Monoclonal AntibodySynergy between Anti–TGF-β and a Tumor Vaccine. Clinical Cancer Research, 15(21), 6560-6569.
  119. Therasse, P., Eisenhauer, E., & Verweij, J. (2006). RECIST revisited: a review of validation studies on tumour assessment. European journal of cancer, 42(8), 1031-1039.
  120. Thomas, D. A., & Massagué, J. (2005). TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer cell, 8(5), 369-380.
  121. Tomar, N., & De, R. K. (2014). Immunoinformatics: a brief review. Immunoinformatics, 23-55.
  122. Torres, N. V., & Santos, G. (2015). The (mathematical) modeling process in biosciences. Frontiers in Genetics, 6, 354.
  123. Tsang, K. Y., Zhu, M., Nieroda, C. A., Correale, P., Zaremba, S., Hamilton, J. M., . . . Schlom, J. (1997). Phenotypic stability of a cytotoxic T-cell line directed against an immunodominant epitope of human carcinoembryonic antigen. Clinical cancer research: an official journal of the American Association for Cancer Research, 3(12), 2439-2449.
  124. van der Burg, S. H. (2018). Correlates of immune and clinical activity of novel cancer vaccines. Paper presented at the Seminars in Immunology.
  125. Vasudevan, S., Tong, Y., & Steitz, J. A. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science, 318(5858), 1931-1934.
  126. Verma, J. (2021). COVID-19 Vaccines: Immune Response after Vaccination against SARS-CoV-2 Infections. Health Science Journal, 0-0.
  127. Verma, J., Warsame, C., Seenivasagam, R. K., Katiyar, N. K., Aleem, E., & Goel, S. Nanoparticle mediated cancer cell therapy: Basic science to clinical applications, Cancer and Metastatis Reviewes, 2023 (just accepted).
  128. Viereck, J., Bang, C., Foinquinos, A., & Thum, T. (2014). Regulatory RNAs and paracrine networks in the heart. Cardiovascular Research, 102(2), 290-301.
  129. von Mehren, M., Arlen, P., Gulley, J., Rogatko, A., Cooper, H. S., Meropol, N. J., . . . Beard, M. T. (2001). The influence of granulocyte macrophage colony-stimulating factor and prior chemotherapy on the immunological response to a vaccine (ALVAC-CEA B7. 1) in patients with metastatic carcinoma. Clinical Cancer Research, 7(5), 1181-1191.
  130. Wallecha, A., Wood, L., Pan, Z.-K., Maciag, P. C., Shahabi, V., & Paterson, Y. (2013). Listeria monocytogenes-derived listeriolysin O has pathogen-associated molecular pattern-like properties independent of its hemolytic ability. Clinical and Vaccine Immunology, 20(1), 77-84.
  131. Wang, C., Zainal, N. S., Chai, S. J., Dickie, J., Gan, C. P., Zulaziz, N., . . . King, E. V. (2021). DNA vaccines targeting novel cancer-associated antigens frequently expressed in head and neck cancer enhance the efficacy of checkpoint inhibitor. Frontiers in immunology, 4275.
  132. Wculek, S. K., Cueto, F. J., Mujal, A. M., Melero, I., Krummel, M. F., & Sancho, D. (2020). Dendritic cells in cancer immunology and immunotherapy. Nature Reviews Immunology, 20(1), 7-24.
  133. West, M. A., Wallin, R. P., Matthews, S. P., Svensson, H. G., Zaru, R., Ljunggren, H.-G., . . . Watts, C. (2004). Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science, 305(5687), 1153-1157.
  134. Wilson, S., & Levy, D. (2012). A mathematical model of the enhancement of tumor vaccine efficacy by immunotherapy. Bulletin of mathematical biology, 74(7), 1485-1500.
  135. Wolchok, J. D., Yang, A. S., & Weber, J. S. (2010). Immune regulatory antibodies: are they the next advance? Cancer journal (Sudbury, Mass.), 16(4), 311.
  136. Yang, J., Zhao, T.-J., Yuan, C.-Q., Xie, J.-H., & Hao, F.-F. (2016). A nonlinear competitive model of the prostate tumor growth under intermittent androgen suppression. Journal of theoretical biology, 404, 66-72.
  137. Yang, Y., Nam, G.-H., Kim, G. B., Kim, Y. K., & Kim, I.-S. (2019). Intrinsic cancer vaccination. Advanced Drug Delivery Reviews, 151, 2-22.
  138. Ying, H., Zaks, T. Z., Wang, R.-F., Irvine, K. R., Kammula, U. S., Marincola, F. M., . . . Restifo, N. P. (1999). Cancer therapy using a self-replicating RNA vaccine. Nature medicine, 5(7), 823-827.
  139. Zhang, Y., Zhang, H., & Wu, S. (2021). LncRNA-CCDC144NL-AS1 promotes the development of hepatocellular carcinoma by inducing WDR5 expression via sponging miR-940. Journal of Hepatocellular Carcinoma, 8, 333.

How to Cite

A critical review on cancer vaccines: a promising immunotherapy. (2022). Biomaterials and Polymers Horizon, 1(3). https://doi.org/10.37819/bph.001.03.0300

How to Cite

A critical review on cancer vaccines: a promising immunotherapy. (2022). Biomaterials and Polymers Horizon, 1(3). https://doi.org/10.37819/bph.001.03.0300

HTML
340

Total
133 22

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2022 Jaya Verma, Caaisha Warsame, Saurav Goel

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.