Computational prediction of electrical and thermal properties of graphene and BaTiO3 reinforced epoxy nanocomposites
Abstract
Graphene based materials e.g., graphene oxide (GO), reduced graphene oxide (RGO) and graphene nano platelets (GNP) as well as Barium titanate (BaTiO3) are emerging reinforcing agents which upon mixing with epoxy provides composite materials with superior mechanical, electrical and thermal properties as well as shielding against electromagnetic (EM) radiations. Inclusion of the aforementioned reinforcing agents has shown to improve the performance, however, the extent of improvement has remained uncertain. In this study, a computational modelling approach was adopted using COMSOL Multiphysics software in conjunction with Bayesian statistical analysis to investigate the effects of including various filler materials e.g. GO, RGO, GNP and BaTiO3 in influencing the direct current (DC) conductivity (σ), dielectric constant (ε) and thermal properties on the resulting epoxy polymer matrix composites. The simulation of epoxy composites were performed for different volume percentage of the filler materials by varying the geometry of the filler material. It was observed that the content of GO, RGO, GNPs and the thickness of graphene nanoplatelets can alter the DC conductivity, dielectric constant, and thermal properties of the epoxy matrix. The lower thickness of GNPs was found to offer the larger value of DC conductivity, thermal conductivity and thermal diffusivity than rest of the graphene nanocomposites, while, the RGO showed better dielectric constant value than neat epoxy, and GO, GNP nanocomposites. Similarly, BaTiO3 nanoparticles content and diameter were observed to alter the dielectric constant, DC conductivity and thermal properties of modified epoxy in several order magnitude than neat epoxy. In this way, the higher diameter particles of BaTiO3 showed better DC conductivity properties, dielectric constant value, thermal conductivity and thermal diffusivity. Moreover, this research provides guidance for further computational examination on the selection of GNP and BaTiO3 materials for the enhancement of the electrical and thermal properties of the epoxy matrix.
References
- Atif, R., Shyha, I., & Inam, F. (2016). Mechanical, thermal, and electrical properties of graphene-epoxy nanocomposites-A review. In Polymers. https://doi.org/10.3390/polym8080281
- Barber, P., Balasubramanian, S., Anguchamy, Y., Gong, S., Wibowo, A., Gao, H., Ploehn, H. J., & Loye, H. C. Zur. (2009). Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials. https://doi.org/10.3390/ma2041697
- Bauhofer, W., & Kovacs, J. Z. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 69(10), 1486–1498. https://doi.org/10.1016/j.compscitech.2008.06.018
- Bikky, R., Badi, N., & Bensaoula, A. (2010). Effective Medium Theory of Nanodielectrics for Embedded Energy Storage Capacitors. Comsol.De.
- Caradonna, A., Badini, C., Padovano, E., & Pietroluongo, M. (2019). Electrical and thermal conductivity of epoxy-carbon filler composites processed by calendaring. Materials. https://doi.org/10.3390/ma12091522
- Carotenuto, G., Romeo, V., Cannavaro, I., Roncato, D., Martorana, B., & Gosso, M. (2012). Graphene-polymer composites. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/40/1/012018
- Chikhi, M., Agoudjil, B., Haddadi, M., & Boudenne, A. (2013). Numerical modelling of the effective thermal conductivity of heterogeneous materials. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/0892705711424921
- Cho, K. S. (2016). Polymer physics. In Springer Series in Materials Science. https://doi.org/10.1007/978-94-017-7564-9_4
- Cho, S. D., Lee, S. Y., Hyun, J. G., & Paik, K. W. (2005). Comparison of theoretical predictions and experimental values of the dielectric constant of epoxy/BaTiO3 composite embedded capacitor films. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-005-6454-3
- Ekanath, D. M., Badi, N., & Bensaoula, A. (2011). Modeling and Simulation of Artificial Core-Shell Based Nanodielectrics for Electrostatic Capacitors Applications. Comsol Conference.
- Friedrich, K., & Almajid, A. A. (2013). Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications. Applied Composite Materials, 20(2), 107–128. https://doi.org/10.1007/s10443-012-9258-7
- Galpaya, D., Wang, M., Liu, M., Motta, N., Waclawik, E., & Yan, C. (2012). Recent Advances in Fabrication and Characterization of Graphene-Polymer Nanocomposites. Graphene, 01(02), 30–49. https://doi.org/10.4236/graphene.2012.12005
- Gresil, M., Wang, Z., Poutrel, Q. A., & Soutis, C. (2017). Thermal Diffusivity Mapping of Graphene Based Polymer Nanocomposites. Scientific Reports. https://doi.org/10.1038/s41598-017-05866-0
- Hass, J., De Heer, W. A., & Conrad, E. H. (2008). The growth and morphology of epitaxial multilayer graphene. In Journal of Physics Condensed Matter. https://doi.org/10.1088/0953-8984/20/32/323202
- Hou, H., Dai, W., Yan, Q., Lv, L., Alam, F. E., Yang, M., Yao, Y., Zeng, X., Xu, J. Bin, Yu, J., Jiang, N., & Lin, C. Te. (2018). Graphene size-dependent modulation of graphene frameworks contributing to the superior thermal conductivity of epoxy composites. Journal of Materials Chemistry A. https://doi.org/10.1039/c8ta03937b
- Jarosinski, L., Rybak, A., Gaska, K., Kmita, G., Porebska, R., & Kapusta, C. (2017). Enhanced thermal conductivity of graphene nanoplatelets epoxy composites. Materials Science- Poland. https://doi.org/10.1515/msp-2017-0028
- Kargar, F., Barani, Z., Salgado, R., Debnath, B., Lewis, J. S., Aytan, E., Lake, R. K., & Balandin, A. A. (2018). Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers. ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsami.8b16616
- Kim, D. S., Baek, C., Ma, H. J., & Kim, D. K. (2016). Enhanced dielectric permittivity of BaTiO3/epoxy resin composites by particle alignment. Ceramics International. https://doi.org/10.1016/j.ceramint.2016.01.103
- Korattanawittaya, S., Petcharoen, K., Sangwan, W., Tangboriboon, N., Wattanakul, K., & Sirivat, A. (2017). Durable compliant electrode based on graphene and natural rubber. Polymer Engineering and Science. https://doi.org/10.1002/pen.24392
- Kultzow, R., & Mainguy, B. (2001). Low dielectric constant and low shrinkage epoxy system for power electronics applications. Proceedings of the Electrical/Electronics Insulation Conference. https://doi.org/10.1109/EEIC.2001.965629
- Lewis, J. S., Barani, Z., Magana, A. S., Kargar, F., & Balandin, A. A. (2019). Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers. Materials Research Express. https://doi.org/10.1088/2053-1591/ab2215
- Li, Y., Zhang, H., Porwal, H., Huang, Z., Bilotti, E., & Peijs, T. (2017). Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2017.01.007
- Lindley, D. V. (1980). Approximate Bayesian methods. Trabajos de Estadistica Y de Investigacion Operativa, 31(1), 223–245. https://doi.org/10.1007/BF02888353
- Luo, S., Shen, Y., Yu, S., Wan, Y., Liao, W. H., Sun, R., & Wong, C. P. (2017). Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites. Energy and Environmental Science. https://doi.org/10.1039/c6ee03190k
- Marra, F., D’Aloia, A. G., Tamburrano, A., Ochando, I. M., De Bellis, G., Ellis, G., & Sarto, M. S. (2016). Electromagnetic and dynamic mechanical properties of epoxy and vinylester-based composites filled with graphene nanoplatelets. Polymers. https://doi.org/10.3390/polym8080272
- Marsden, A. J., Papageorgiou, D. G., Vallés, C., Liscio, A., Palermo, V., Bissett, M. A., Young, R. J., & Kinloch, I. A. (2018). Electrical percolation in graphene-polymer composites. In 2D Materials. https://doi.org/10.1088/2053-1583/aac055
- Mather, P. T., Luo, X., & Rousseau, I. A. (2009). Shape memory polymer research. In Annual Review of Materials Research. https://doi.org/10.1146/annurev-matsci-082908-145419
- McGrail, B. T., Sehirlioglu, A., & Pentzer, E. (2015). Polymer composites for thermoelectric applications. Angewandte Chemie - International Edition. https://doi.org/10.1002/anie.201408431
- Mekala, R., & Badi, N. (2013). Modeling and Simulation of High Permittivity Core-shell Ferroelectric Polymers for Energy Storage Solutions. COMSOL Conference.
- Ming, P., Zhang, Y., Bao, J., Liu, G., Li, Z., Jiang, L., & Cheng, Q. (2015). Bioinspired highly electrically conductive graphene-epoxy layered composites. RSC Advances. https://doi.org/10.1039/c5ra00233h
- Oladele, I. O., Omotosho, T. F., & Adediran, A. A. (2020). Polymer-Based Composites: An Indispensable Material for Present and Future Applications. International Journal of Polymer Science, 2020, 1–12. https://doi.org/10.1155/2020/8834518
- Pant, H. C., Patra, M. K., Verma, A., Vadera, S. R., & Kumar, N. (2006). Study of the dielectric properties of barium titanate-polymer composites. Acta Materialia. https://doi.org/10.1016/j.actamat.2006.02.031
- Pathak, A. K., Borah, M., Gupta, A., Yokozeki, T., & Dhakate, S. R. (2016). Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites. Composites Science and Technology. https://doi.org/10.1016/j.compscitech.2016.09.007
- Phan, T. T. M., Chu, N. C., Luu, V. B., Nguyen Xuan, H., Martin, I., & Carriere, P. (2016). The role of epoxy matrix occlusions within BaTiO3 nanoparticles on the dielectric properties of functionalized BaTiO3/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2016.08.018
- Phan, T. T. M., Chu, N. C., Luu, V. B., Nguyen Xuan, H., Pham, D. T., Martin, I., & Carrière, P. (2016). Enhancement of polarization property of silane-modified BaTiO3 nanoparticles and its effect in increasing dielectric property of epoxy/BaTiO3 nanocomposites. Journal of Science: Advanced Materials and Devices. https://doi.org/10.1016/j.jsamd.2016.04.005
- Popielarz, R., & Chiang, C. K. (2007). Polymer composites with the dielectric constant comparable to that of barium titanate ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. https://doi.org/10.1016/j.mseb.2007.01.035
- R. Byron Bird Warren E. Stewart Edwin N. Lightfoo, Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2006). Transport Phenomena, Revised 2nd Edition. John Wiley & Sons, Inc.
- Rosner, G. L. (2020). Bayesian Methods in Regulatory Science. Statistics in Biopharmaceutical Research, 12(2), 130–136. https://doi.org/10.1080/19466315.2019.1668843
- Schumacher, J., Fideu, P., Ziegmann, G., & Herrmann, A. (2009). A Consistent Environment for the Numerical Prediction of the Properties of Composite Materials. COMSOL Conference.
- Shahil, K. M. F., & Balandin, A. A. (2012a). Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Letters. https://doi.org/10.1021/nl203906r
- Shahil, K. M. F., & Balandin, A. A. (2012b). Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Communications. https://doi.org/10.1016/j.ssc.2012.04.034
- Tang, G., Jiang, Z. G., Li, X., Zhang, H. Bin, Hong, S., & Yu, Z. Z. (2014). Electrically conductive rubbery epoxy/diamine-functionalized graphene nanocomposites with improved mechanical properties. Composites Part B: Engineering. https://doi.org/10.1016/j.compositesb.2014.08.013
- Tomer, V., Polizos, G., Manias, E., & Randall, C. A. (2010). Epoxy-based nanocomposites for electrical energy storage. I: Effects of montmorillonite and barium titanate nanofillers. Journal of Applied Physics. https://doi.org/10.1063/1.3487275
- van de Schoot, R., Kaplan, D., Denissen, J., Asendorpf, J. B., Neyer, F. J., & van Aken, M. A. G. (2014). A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research. Child Development, 85(3), 842–860. https://doi.org/10.1111/cdev.12169
- Wang, Z., Nelson, J. K., Koratkar, N., Schadler, L. S., Hillborg, H., & Zhao, S. (2011). Dielectric properties of electrospun barium titanate fibers/graphene/ silicone rubber composites. Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, CEIDP. https://doi.org/10.1109/CEIDP.2011.6232738
- Wang, Zepu, Nelson, J. K., Miao, J., Linhardt, R. J., Schadler, L. S., Hillborg, H., & Zhao, S. (2012). Effect of high aspect ratio filler on dielectric properties of polymer composites: A study on barium titanate fibers and graphene platelets. IEEE Transactions on Dielectrics and Electrical Insulation. https://doi.org/10.1109/TDEI.2012.6215100
- Yousefi, N., Sun, X., Lin, X., Shen, X., Jia, J., Zhang, B., Tang, B., Chan, M., & Kim, J. K. (2014). Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Advanced Materials, 26(31), 5480–5487. https://doi.org/10.1002/adma.201305293
- Zandiatashbar, A., Lee, G. H., An, S. J., Lee, S., Mathew, N., Terrones, M., Hayashi, T., Picu, C. R., Hone, J., & Koratkar, N. (2014). Effect of defects on the intrinsic strength and stiffness of graphene. Nature Communications. https://doi.org/10.1038/ncomms4186
- Zhang, C., Chi, Q., Dong, J., Cui, Y., Wang, X., Liu, L., & Lei, Q. (2016). Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles. Scientific Reports. https://doi.org/10.1038/srep33508
- Zhao, S., Chang, H., Chen, S., Cui, J., & Yan, Y. (2016). High-performance and multifunctional epoxy composites filled with epoxide-functionalized graphene. European Polymer Journal. https://doi.org/10.1016/j.eurpolymj.2016.09.036
How to Cite
How to Cite
Downloads
Article Details
Most Read This Month
License
Copyright (c) 2021 Raghvendra Kumar Mishra, Saurav Goel, Hamed Yazdani Nezhad
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.