Skip to main content Skip to main navigation menu Skip to site footer

Application of Novel Biogenic nanoparticles for antimicrobial traits

  • Arun Kumar
  • Deepanjali Sharma
  • Bhuvaneshwari Balasubramaniam
  • Rahul Thakur
  • Reena V. Saini
  • Raju K Gupta
  • Divya Mittal
  • Adesh K. Saini

Abstract

Nanotechnology is a better approach to dealing with the current challenges of phytopathogens in agriculture and the environment. Nanoparticles (NPs) are less time-consuming, non-toxic and environmentally friendly and provide a high yield compared to conventional synthesis of NPs. Using plant growth promoting (PGP) bacterial strain for the synthesis of nanoparticles can route out the challenges of using chemical-based fertilizers and pesticides for agriculture. In our study, silver nanoparticles (AgNPs) were synthesized by using Burkholderia sp. 15B, which were further characterized by various physical techniques. All the techniques suggested the formation of biogenic NPs. We found that the bacteria-based NPs were able to hamper the growth of phytopathogenic fungi by more than 80%, as examined by the inhibition of fungal growth in the presence of green NPs. In addition, the synthesized NPs efficiently rescued seedlings from phytopathogenic fungal invasion. The results implicate the use of microorganism-mediated AgNPs as pesticides over chemical-based pesticides.

Section

References

  1. Abbai, R., Kim, Y. J., Mohanan, P., El-Agamy Farh, M., Mathiyalagan, R., Yang, D. U., Rangaraj, S., Venkatachalam, R., Kim, Y. J., & Yang, D. C. (2019). Silicon confers protective effect against ginseng root rot by regulating sugar efflux into apoplast. Scientific reports, 9(1), 18259. https://doi.org/10.1038/s41598-019-54678-x
  2. Adeel, M., Farooq, T., White, J. C., Hao, Y., He, Z., &Rui, Y. (2021). Carbon-based nanomaterials suppress tobacco mosaic virus (TMV) infection and induce resistance in Nicotianabenthamiana. Journal of Hazardous Materials, 404, 124167.https://doi.org/10.1016/j.jhazmat.2020.124167
  3. Brock, D. A., Douglas, T. E., Queller, D. C., &Strassmann, J. E. (2011). Primitive agriculture in a social amoeba. Nature, 469(7330), 393-396.https://doi.org/10.1038/nature09668
  4. Capeness, M. J., Echavarri-Bravo, V., &Horsfall, L. E. (2019). Production of biogenic nanoparticles for the reduction of 4-nitrophenol and oxidative Laccase-Like reactions. Frontiers in microbiology, 10, 997.https://doi.org/10.3389/fmicb.2019.00997
  5. Chandan, G., Pal, S., Kashyap, S., Siwal, S., Dhiman, S., Saini, A. & Saini, R. (2021). Synthesis, characterization and anticancer activities of silver nanoparticles from the leaves of Datura stramonium L. Nanofabrication, 6(1), 25-35. https://doi.org/10.1515/nanofab-2020-0103
  6. Fang, X., Wang, Y., Wang, Z., Jiang, Z., & Dong, M. (2019). Microorganism assisted synthesized nanoparticles for catalytic applications. Energies, 12(1), 190.https://doi.org/10.3390/en12010190
  7. Grasso, G., Zane, D., &Dragone, R. (2020). Microbial nanotechnology: challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials, 10(1), 11.https://doi.org/10.3390/nano10010011
  8. Gupta, H., Saini, R. V., Pagadala, V., Kumar, N., Sharma, D. K., & Saini, A. K. (2016). Analysis of plant growth promoting potential of endophytes isolated from Echinacea purpurea and Lonicera japonica. Journal of soil science and plant nutrition, 16(3), 558-577. http://dx.doi.org/10.4067/S0718-95162016005000025
  9. Hira, I., Kumari, R., Saini, A. K., Gullilat, H., Saini, V., Sharma, A. K., & Saini, R. V. (2021) Apoptotic cell death induction through Pectin, guar gum and zinc oxide nanocomposite in A549 lung adenocarcinomas. Biointerface Research in Applied Chemistry, 12, 1856 – 1869. https://doi.org/10.33263/BRIAC122.18561869
  10. Kannan, N., Selvaraj, S., &Murty, R. V. (2010). Microbial production of silver nanoparticles. Digest journal of nanomaterials and biostructures, 5(1), 135-140.
  11. Kumari, V., & Tripathi, A. K. (2020). Remediation of heavy metals in pharmaceutical effluent with the help of Bacillus cereus-based green-synthesized silver nanoparticles supported on alumina. Applied Nanoscience, 10(6), 1709-1719.https://doi.org/10.1007/s13204-020-01351-9
  12. Kumari, R., Saini, A. K., Chhillar, A. K., Saini, V., & Saini, R.V. (2021). Antitumor Effect of Bio-Fabricated Silver Nanoparticles Towards Ehrlich Ascites Carcinoma. Biointerface Research in Applied Chemistry,11 (5), 12958 - 12972 https://doi.org/10.33263/BRIAC115.1295812972
  13. Li, C., & Yan, B. (2020). Opportunities and challenges of phyto-nanotechnology. Environmental Science: Nano, 7(10), 2863-2874.https://doi.org/10.1039/D0EN00729C
  14. Lin, N., Wang, C., Ding, J., Su, L., Xu, L., Zhang, B., Zhang, Y., & Fan, J. (2020). Efficacy of nanoparticle encapsulation on suppressing oxidation and enhancing antifungal activity of cyclic lipopeptides produced by Bacillus subtilis. Colloids and Surfaces B: Biointerfaces, 193, 111143.https://doi.org/10.1016/j.colsurfb.2020.111143
  15. Mishra, S., Singh, B. R., Naqvi, A. H., & Singh, H. B. (2017). Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens. Scientific reports, 7(1), 1-15. https://doi.org/10.1038/srep45154
  16. Mittal, D., Shukla, R., Verma, S., Sagar, A., Verma, K. S., Pandey, A., ... & Saini, A. K. (2019). Fire in pine grown regions of Himalayas depletes cultivable plant growth promoting beneficial microbes in the soil. Applied Soil Ecology, 139, 117-124.https://doi.org/10.1016/j.apsoil.2019.03.020
  17. Mittal, D., Thakur, M., Khosla, P.K., Saini, V., Saini, R. V., Saini, A. K.(2021a). Rhizobacteria Associated with Spilanthes acmellaMurr. Confer Drought-Tolerance and Plant Growth Promotion. Biointerface Research in Applied Chemistry, 11, 13155-13170. https://doi.org/10.33263/BRIAC115.1315513170
  18. Mittal, D., Kumar, A., Balasubramaniam, B., Thakur, R., Siwal, S. S., Saini, R. V., Gupta, R. K., & Saini, A. K. (2022b). Synthesis of Biogenic silver nanoparticles using plant growth-promoting bacteria: Potential use as biocontrol agent against phytopathogens. Biomaterials and Polymers Horizon , 1 (1), 1-10.
  19. Narayan, O. P., Verma, N., Singh, A. K., Oelmüller, R., Kumar, M., Prasad, D., ... &Johri, A. K. (2017). Antioxidant enzymes in chickpea colonized by Piriformosporaindica participate in defense against the pathogen Botrytis cinerea. Scientific reports, 7(1), 1-11 https://doi.org/10.1038/s41598-017-12944-w
  20. Petatan-Sagahon, I., Anducho-Reyes, M. A., Silva-Rojas, H. V., Arana-Cuenca, A., Tellez-Jurado, A., Cárdenas-Álvarez, I. O., & Mercado-Flores, Y. (2011). Isolation of bacteria with antifungal activity against the phytopathogenic fungi Stenocarpellamaydis and Stenocarpellamacrospora. International Journal of Molecular Sciences, 12(9), 5522-5537. https://doi.org/10.3390/ijms12095522
  21. Raizada, P., Priya, B., Thakur, P., & Singh, P. (2016). Solar light induced photo degradation of oxy-tetra-cyline using Zr doped TiO2/CaO based nanocomposite. http://nopr.niscair.res.in/handle/123456789/35068
  22. Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A., ... &Waris, A. A. (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 214, 269-277.https://doi.org/10.1016/j.chemosphere.2018.09.120
  23. Rodrigues, S. M., Demokritou, P., Dokoozlian, N., Hendren, C. O., Karn, B., Mauter, M. S., ... & Lowry, G. V. (2017). Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environmental Science: Nano, 4(4), 767-781.https://doi.org/10.1039/C6EN00573J
  24. Tarafdar, J. C., Sharma, S., &Raliya, R. (2013). Nanotechnology: Interdisciplinary science of applications. African Journal of Biotechnology, 12(3).https://doi.org/10.5897/AJB12.2481
  25. Vaseghi, Z., Nematollahzadeh, A., &Tavakoli, O. (2018). Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: a review. Reviews in Chemical Engineering, 34(4), 529-559.https://doi.org/10.1515/revce-2017-0005
  26. Walker, G. W., Kookana, R. S., Smith, N. E., Kah, M., Doolette, C. L., Reeves, P. T., ... & Navarro, D. A. (2017). Ecological risk assessment of nano-enabled pesticides: a perspective on problem formulation. Journal of Agricultural and Food Chemistry, 66(26), 6480-6486.https://doi.org/10.1021/acs.jafc.7b02373
  27. Yaqoob, A. A., Umar, K., & Ibrahim, M. N. M. (2020). Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Applied Nanoscience, 10(5), 1369-1378.https://doi.org/10.1007/s13204-020-01318-w
  28. Yin, J., Wang, Y., & Gilbertson, L. M. (2018). Opportunities to advance sustainable design of nano-enabled agriculture identified through a literature review. Environmental Science: Nano, 5(1), 11-26.https://doi.org/10.1039/C7EN00766C

How to Cite

Application of Novel Biogenic nanoparticles for antimicrobial traits. (2022). Biomaterials and Polymers Horizon, 1(2). https://doi.org/10.37819/bph.001.02.0211

How to Cite

Application of Novel Biogenic nanoparticles for antimicrobial traits. (2022). Biomaterials and Polymers Horizon, 1(2). https://doi.org/10.37819/bph.001.02.0211

HTML
333

Total
238 3

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2022 Arun Kumar, Deepanjali Sharma, Bhuvaneshwari Balasubramaniam, Rahul Thakur, Reena V. Saini, Raju K Gupta, Divya Mittal, Adesh K. Saini

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Most read articles by the same author(s)