Revisiting the conditioning variables of neuroplasticity induced by music training

Authors

  • Miriam Albusac-Jorge Universidad de Granada

DOI:

https://doi.org/10.37467/revtechno.v11.4408

Keywords:

Brain, Conditioning variables, Neuroplasticity, Music, Musicians, Musical performance, Training

Abstract

Music training changes the brain both anatomically and functionally, where some variables conditioning the neuroplasticity. Here is a review of them, which include recent research in the neuroscience of music field. These variables are individual differences, sex, laterality, absolute pitch, instrument family, type of musical training received by the performer, training details –such as the intensity or age of onset, for example–, in addition to other environmental and genetic factors.

References

Albusac-Jorge, M. (2022). Mú sica, aprendizaje, experiencia y plasticidad cerebral. En A. Gregorio Cano, J. Sánchez Santamaría & B. Miguélez Juan (Coords.). Campos de investigación de vanguardia, Pirámide.

Altenmüller, E., & Furuya, S. (2016). Brain Plasticity and the Concept of Metaplasticity in Skilled Musicians. En J. Laczko, & M. Latash, (Eds.). Progress in Motor Control: Theories and Translations. Advances in Experimental Medicine and Biology, 957 (pp. 197-208). Springer. https://doi.org/10.1007/978-3-319-47313-0_11

Bachem, A. (1937). Various types of absolute pitch. Journal of the Acoustical Society of America, 9, 146-151. https://doi.org/10.1121/1.1915919

Bachem, A. (1955). Absolute pitch. Journal of the Acoustical Society of America, 27, 1180-1185. https://doi.org/10.1121/1.1908155

Baer, L. H., Park, M. T. M., Bailey, J. A., Chakravarty, M. M., Li, K. Z. H., & Penhune, V. B. (2015). Regional cerebellar volumes are related to early musical training and finger tapping performance, Neuroimage, 109, 130-139.https://doi.org/10.1016/j.neuroimage.2014.12.076

Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2014). Early Musical Training Is Linked to Gray Matter Structure in the Ventral Premotor Cortex and Auditory–Motor Rhythm Synchronization Performance. Journal of Cognitive Neuroscience, 26 (4), 755-767. https://doi.org/10.1162/jocn_a_00527

Bangert, M., & Schlaug, G. (2006). Specialization of the specialized in features of external human brain morphology. European Journal of Neuroscience, 24(6), 1832-1834. https://doi.org/10.1111/j.1460-9568.2006.05031.x

Belden, A., Zeng, T., Przysinda, E., Anteraper, S. A., Whitfield-Gabrieli, S., & Loui, P. (2020). Improvising at rest: Differentiating jazz and classical music training with resting state functional connectivity. Neuroimage, 207, 116384. https://doi.org/10.1016/j.neuroimage.2019.116384

Bengtsson, S., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullén, F. (2005) Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8, 1148-1150. https://doi.org/10.1038/nn1516

Berlucchi, G., & Buchtel, H. A. (2009). Neuronal plasticity: historical roots and evolution of meaning. Experimental Brain Research, 192(3), 307-319. https://doi.org/10.1007/s00221-008-1611-6

Bermudez, P. (2008). The neural correlates of absolute pitch (Tesis doctoral). McGill University, Canadá. https://tinyurl.com/28672ydz

Bermudez, P., Lerch, J. P., Evans, A. C., & Zatorre, R. J. (2009). Neuroanatomical Correlates of Musicianship as Revealed by Cortical Thickness and Voxel-Based Morphometry. Cerebral Cortex, 19(7), 1583-1596. https://doi.org/10.1093/cercor/bhn196

Bermudez, P., & Zatorre, R. J. (2005). Differences in Gray Matter between Musicians and Nonmusicians. Annals of the New York Academy of Sciences, 1060(1), 395-399. https://doi.org/10.1196/annals.1360.057

Bianco, V., Berchicci, M., Gigante, E., Perri, R. L., Quinzi, F., Mussini, E., & Di Russo, F. (2022). Brain Plasticity Induced by Musical Expertise on Proactive and Reactive Cognitive Functions. Neuroscience, 483, 1-12. https://doi.org/10.1016/j.neuroscience.2021.12.032

Bianco, R., Novembre, G., Keller, P. E., Villringer, A. & Sammler, D. (2018). Musical genre-dependent behavioural and EEG signatures of action planning: A comparison between classical and jazz pianists. Neuroimage, 169, 383-394. https://doi.org/10.1016/j.neuroimage.2017.12.058

Brans, R. G., Kahn, R. S., Schnack, H. G., van Baal, G. C., Posthuma, D., van Haren, N. E., Lepage, C., Lerch, J. P., Collins, D.L., Evans, A. C., Boomsma, D. I., & Hulshoff Pol, H. E. (2010). Brain plasticity and intellectual ability areinfluenced by shared genes. The Journal of Neuroscience, 30(16), 5519-5524. https://doi.org/10.1523/JNEUROSCI.5841-09

Brown, W. A., Cammuso, K., Sachs, H., Winklosky, B., Mullane, J., Bernier, R., Svenson, S., Arin, D., Rosen-Sheidley, B., & Folstein, S. E. (2003). Autism-related Language, Personality, and Cognition in People with Absolute Pitch: Results of a Preliminary Study. Journal of Autism and Developmental Disorders volume, 33(2), 163-167.https://doi.org/10.1023/a:1022987309913

Burkhard, A., Hänggi, J., Elmer, S., & Jäncke, L. (2020). The importance of the fibre tracts connecting the planum temporale in absolute pitch possessors. Neuroimage, 211, 116590. https://doi.org/10.1016/j.neuroimage.2020.116590

Choi, U.-S., Sung, Y.-W., Hong, S., Chung J.-Y., & Ogawa, S. (2015). Structural and functional plasticity specific to musical training with wind instruments. Frontiers in Human Neuroscience, 9, 597. https://doi.org/10.3389/fnhum.2015.00597

Choleris, E., Galea, L. A. M., Sohrabji, F., & Frick, K. M. (2018). Sex differences in the brain: Implications for behavioral and biomedical research. Neuroscience & Biobehavioral Reviews, 85, 126-145. https://doi.org/10.1016/j.neubiorev.2017.07.005

Cosgrove, K. P., Mazure, C. M., & Staley, J. K. (2007). Evolving knowledge of sex differences in brain structure, function, and chemistry. Biological psychiatry, 62(8), 847-855. https://doi.org/10.1016/j.biopsych.2007.03.001

Coro, G., Masetti, G., Bonhoeffer, P., & Betcher, M. (2019). Distinguishing Violinists and Pianists Based on Their Brain Signals. En I. Tetko, V. Kůrková, P. Karpov, & F. Theis, F. (Eds.). Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. Lecture Notes in Computer Science, 11727 (pp. 123-137). Springer. https://doi.org/10.1007/978-3-030-30487-4_11

Dalla Bella, S. (2016). Music and Brain Plasticity. En S. Hallam, I. Cross, & M. Thaut (Eds.). The Oxford Handbook of Music Psychology (pp. 325-342). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198722946.013.23

Danielsen, A., Nymoen, K., Langerød, M.T., Jacobsen, E., Johansson, M., & London, J. (2022). Sounds familiar(?): Expertise with specific musical genres modulates timing perception and micro-level synchronization to auditory stimuli. Attention, Perception, & Psychophysics, 84, 599-615. https://doi.org/10.3758/s13414-021-02393-z

Deutsch D., Henthorn T., & Dolson, M. (2004). Absolute pitch, speech, and tone language: some experiments and a proposed framework. Music Perception, 21(3), 339-356. https://doi.org/10.1525/mp.2004.21.3.339

Doelling, K. B., & Poeppel, D. (2015). Cortical entrainment to music and its modulation by expertise. Proceedings of the National Academy of Sciences of the United States of America, 112(45), E6233-E6242. https://doi.org/10.1073/pnas.1508431112

Dohn, A., Garza-Villarreal, E. A., Ribe, L. R., Wallentin, M., & Vuust, P. (2014). Musical Activity Tunes Up Absolute Pitch Ability. Music Perception: An Interdisciplinary Journal, 31(4), 359-371. https://doi.org/10.1525/mp.2014.31.4.359

Dohn, A., Garza-Villarreal, E. A., Chakravarty, M. M., Hansen, M., Lerch, J. P., & Vuust, P. (2015). Gray- and White-Matter Anatomy of Absolute Pitch Possessors. Cerebral Cortex, 25(5), 1379-1388. https://doi.org/10.1093/cercor/bht334

Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270(5234), 305-307. https://doi.org/10.1126/science.270.5234.305

Elmer S., Rogenmoser L., Kühnis J., & Jäncke L. (2015). Bridging the gap between perceptual and cognitive perspectives on absolute pitch. Journal of Neuroscience, 35(1), 366-371. https://doi.org/10.1523/JNEUROSCI.3009-14.2015

Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363-406. https://doi.org/10.1037/0033-295X.100.3.363

Foster, N. E. V., Halpern, A. R., & Zatorre, R. J. (2013). Common parietal activation in musical mental transformations across pitch and time. Neuroimage, 75, 27-35. https://doi.org/10.1016/j.neuroimage.2013.02.044

Gärtner, H., Minnerop, M., Pieperhoff, P., Schleicher, A., Zilles, K., Altenmüller, E., & Amunts, K. (2013). Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players. Frontiers in Psychology, 4, 636. https://doi.org/10.3389/fpsyg.2013.00636

Gegenhuber, B., & Tollkuhn, J. (2020). Signatures of sex: Sex differences in gene expression in the vertebrate brain. WIREs Developmental Biology, 9(1), e348. https://doi.org/10.1002/wdev.348

Groussard, M., Viader, F., Landeau, B., Desgranges, B., Eustache, F., & Platel, H. (2014). The effects of musical practice on structural plasticity: The dynamics of grey matter changes. Brain and Cognition, 90, 174-180. https://doi.org/10.1016/j.bandc.2014.06.013

Guadalupe, T., Willems, R. M., Zwiers, M. P., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Franke, B., Fisher, S., & Francks, C. (2014). Differences in cerebral cortical anatomy of left- and right-handers. Frontiers in Psychology, 5, 261. https://doi.org/10.3389/fpsyg.2014.00261

Habib, M., & Besson, M. (2009). What do music training and musical experience teach us about brain plasticity? Music Perception, 26(3), 279-285. https://doi.org/10.1525/mp.2009.26.3.279

Halwani, G. F., Loui, P., Rüber, T., & Schlaug, G. (2011). Effects of Practice and Experience on the Arcuate Fasciculus: Comparing Singers, Instrumentalists, and Non-Musicians. Frontiers in Psychology, 2, 156. https://doi.org/10.3389/fpsyg.2011.00156

Hamilton, R. H., Pascual-Leone, A., & Schlaug, G. (2004). Absolute pitch in blind musicians. Neuroreport, 15(5), 803-806. https://doi.org/10.1097/01.wnr.0000118981.36602.90

Hammond, G. (2002). Correlates of human handedness in primary motor cortex: a review and hypothesis. Neuroscience and Biobehavioral Reviews, 26(3), 285-292. https://doi.org/10.1016/S0149-7634(02)00003-9

Hansen, N. C., & Reymore, L. (2021). Articulatory motor planning and timbral idiosyncrasies as underlying mechanisms of instrument-specific absolute pitch in expert musicians. Plos One, 16(2), e0247136. https://doi.org/10.1371/journal.pone.0247136

Hedger, S. C., Heald, S. L. M., & Nusbaum, H. C. (2013). Absolute Pitch May Not Be So Absolute. Psychological Science, 24(8), 1496-1502. https://doi.org/10.1177/0956797612473310

Hedger, S. C., Heald, S. L., Koch, R., & Nusbaum, H. C. (2015). Auditory working memory predicts individual differences in absolute pitch learning. Cognition, 140, 95‐110. https://doi.org/10.1016/j.cognition.2015.03.012

Herholz, S. C., Boh, B., & Pantev, C. (2011). Musical training modulates encoding of higher-order regularities in the auditory cortex. European Journal of Neuroscience, 34(3), 524-529. https://doi.org/10.1111/j.1460-9568.2011.07775.x

Herholz, S. C., & Zatorre, R. J. (2012). Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron, 76(3), 486-502. https://doi.org/10.1016/j.neuron.2012.10.011

Hirata, Y., Kuriki, S., & Pantev, C. (1999). Musicians with absolute pitch show distinct neural activities in the auditory cortex. Neuroreport, 10(5), 999-1002. https://doi.org/10.1097/00001756-199904060-00019

Hou, J., Chen, A. C. N., Song, B., Sun, C., & Beauchaine, T. P. (2017). Neural correlates of absolute pitch: A review. Musicae Scientiae, 21(3), 287-302. https://doi.org/10.1177/1029864916662903

Hund-Georgiadis, M., von Cramon, D. (1999). Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic-resonance signals. Experimental Brain Research, 125, 417-425. https://doi.org/10.1007/s002210050698

Hutchinson, S., Lee, L. H., Gaab, N., & Schlaug, G. (2003). Cerebellar volume of musicians. Cerebral Cortex, 13(9), 943-949. https://doi.org/10.1093/cercor/13.9.943

Ireland, K., Iyer, T. A., & Penhune, V. B. (2019). Contributions of age of start, cognitive abilities and practice to musical task performance in childhood. Plos One, 14(4), e0216119. https://doi.org/10.1371/journal.pone.0216119

Itoh, K., Suwazono, S., Arao, H., Miyazaki, K., & Nakada, T. (2005). Electrophysiological correlates of absolute pitch and relative pitch. Cerebral Cortex, 15(6), 760-769. https://doi.org/10.1093/cercor/bhh177

Jäncke, L. (2009). Music drives brain plasticity. F1000 Biology Reports, 1(10), 78. https://doi.org/10.3410/B1-78

Jäncke, L., Langer, N., & Hänggi, J. (2012). Diminished Whole-brain but Enhanced Peri-sylvian Connectivity in Absolute Pitch Musicians. Journal of Cognitive Neuroscience, 24(6), 1447-1461. https://doi.org/10.1162/jocn_a_00227

Jäncke, L., Peters, M., Schlaug, G., Posse, S., Steinmetz, H., & Müller-Gärtner, H.-W. (1998). Differential magnetic resonance signal change in human sensorimotor cortex to finger movements of different rate of the dominant and subdominant hand. Cognitive Brain Research, 6(4), 279-284. https://doi.org/10.1016/S0926-6410(98)00003-2

Johansson, B. B. (2006). Music and brain plasticity. European Review, 14(1), 49-64. https://doi.org/10.1017/S1062798706000056

Kanaan, R. A., Chaddock, C., Allin, M., Picchioni, M. M., Daly, E., Shergill, S. S., & McGuire, P. K. (2014). Gender influence on white matter microstructure: a tract-based spatial statistics analysis. Plos One, 9, e91109. https://doi.org/10.1371/journal.pone.0091109

Kawase S., Ogawa J., Obata S., & Hirano T. (2018). An investigation into the relationship between onset age of musical lessons and levels of sociability in childhood. Frontiers in Psychology, 9, 2244. https://doi.org/10.3389/fpsyg.2018.02244

Keenan, J. P., Thangaraj, V., Halpern, A. R., & Schlaug G. (2001). Absolute pitch and planum temporale. Neuroimage, 14(6), 1402‐1408. https://doi.org/10.1006/nimg.2001.0925

Kertesz, A., Polk, M., Black, S. E., & Howell, J. (1990). Sex, handedness, and the morphometry of cerebral asymmetries on magnetic resonance imaging. Brain Research, 530(1), 40-48. https://doi.org/10.1016/0006-8993(90)90655-U

Kim, S. G., Ashe, J., Hendrich, K., Ellermann, J. M., Merkle, H., Uğurbil, K., & Georgopoulos, A. P. (1993). Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science, 261(5121), 615-617. https://doi.org/10.1126/science.8342027

Kim, S. G., & Knösche, T. R. (2016). Intracortical myelination in musicians with absolute pitch: Quantitative morphometry using 7-T MRI. Human Brain Mapping, 37(10), 3486‐3501. https://doi.org/10.1002/hbm.23254

Kim, S. G., & Knösche, T. R. (2017a). On the Perceptual Subprocess of Absolute Pitch. Frontiers in Neuroscience, 11, 557. https://doi.org/10.3389/fnins.2017.00557

Kim, S. G., & Knösche, T. R. (2017b). Resting state functional connectivity of the ventral auditory pathway in musicians with absolute pitch. Human Brain Mapping, 38(8), 3899‐3916. https://doi.org/10.1002/hbm.23637

Kliuchko, M., Brattico, E., Gold, B. P., Tervaniemi, M., Bogert, B., Toiviainen, P., & Vuust, P. (2019). Fractionating auditory priors: A neural dissociation between active and passive experience of musical sounds. Plos One, 14(5), e0216499. https://doi.org/10.1371/journal.pone.0216499

Kodiweera, C., Alexander, A. L., Harezlak, J., McAllister, T. W., & Wu, Y. C. (2016). Age effects and sex differences in human brain white matter of young to middle-aged adults: A DTI, NODDI, and q-space study. Neuroimage, 128, 180-192. https://doi.org/10.1016/j.neuroimage.2015.12.033

Kolb, B. (2018). Brain plasticity and experience. En R. Gibb & B. Kolb (Eds.). The Neurobiology of Brain and Behavioral Development (pp. 341-389). Academic Press. https://doi.org/10.1016/B978-0-12-804036-2.00013-3

Kurth, F., Thompson, P. M., & Luders, E. (2018). Investigating the Differential Contributions of Sex and Brain Size to Gray Matter Asymmetry. Cortex, 99, 235-242. https://doi.org/10.1016/j.cortex.2017.11.017

Lee, S. K. (2018). Sex as an important biological variable in biomedical research. BMB Reports, 51(4), 167-173. https://doi.org/10.5483/BMBRep.2018.51.4.034

Lee, D. J., Chen, Y., & Schlaug, G. (2003). Corpus callosum: musician and gender effects. Neuroreport, 14(2), 205-209. https://doi.org/10.1097/01.wnr.0000053761.76853.41

Leipold, S., Klein, C., & Jäncke, L. (2021). Musical Expertise Shapes Functional and Structural Brain Networks Independent of Absolute Pitch Ability. Journal of Neuroscience, 41(11), 2496-2511. https://doi.org/10.1523/JNEUROSCI.1985-20.2020

Levitin, D. J., & Rogers, S. E. (2005). Absolute pitch: perception, coding, and controversies. Trends in Cognitive Sciences, 9(1), 26-33. https://doi.org/10.1016/j.tics.2004.11.007

Loui, P., Li, H. C., Hohmann, A., & Schlaug, G. (2011). Enhanced cortical connectivity in absolute pitch musicians: A model for local hyperconnectivity. Journal of Cognitive Neuroscience, 23(4), 1015-1026. https://doi.org/10.1162/jocn.2010.21500

Luders, E., Gaser, C., Narr, K. L., & Toga, A. W. (2009). Why Sex Matters: Brain Size Independent Differences in Gray Matter Distributions between Men and Women. Journal of Neuroscience, 29(45), 14265-14270. https://doi.org/10.1523/JNEUROSCI.2261-09.2009

McKetton, L., DeSimone, K., & Schneider, K. A. (2019). Larger Auditory Cortical Area and Broader Frequency Tuning Underlie Absolute Pitch. The Journal of Neuroscience, 39(15), 2930-2937. https://doi.org/10.1523/JNEUROSCI.1532-18.2019

Mateos-Aparicio, P., & Rodríguez-Moreno, A. (2019). The impact of studying brain plasticity. Frontiers in Cellular Neuroscience, 13, 66. https://doi.org/10.3389/fncel.2019.00066

Matthews, T. E., Thibodeau, J. N. L., Gunther, B. P., & Penhune, V. B. (2016). The Impact of Instrument-Specific Musical Training on Rhythm Perception and Production. Frontiers in Psychology, 7, 69. https://doi.org/10.3389/fpsyg.2016.00069

Mehrabinejad, M. M., Rafei, P., Sanjari Moghaddam, H., Sinaeifar, Z., & Aarabi, M. H. (2021). Sex Differences are Reflected in Microstructural White Matter Alterations of Musical Sophistication: A Diffusion MRI Study. Frontiers in Neuroscience, 15, 622053. https://doi.org/10.3389/fnins.2021.622053

Merrett, D. L.; Peretz, I., & Wilson, S. J. (2013). Moderating variables of music training-induced neuroplasticity: a review and discussion. Frontiers in Psychology, 4, 606. https://doi.org/10.3389/fpsyg.2013.00606

Merrett, D. L., & Wilson, S. J. (2012). Music and neural plasticity. En N. S. Rickard & K. McFerran (Eds.). Lifelong Engagement with Music: benefits for mental health and well-being (pp. 119-160). Nova Science Publishers.

Miles S. A., Miranda R. A., & Ullman M. T. (2016). Sex differences in music: a female advantage at recognizing familiar melodies. Frontiers in Psychology, 7, 278. https://doi.org/10.3389/fpsyg.2016.00278

Moore, E., Schaefer, R. S., Bastin, M. E., Roberts, N., & Overy, K. (2017). Diffusion tensor MRI tractography reveals increased fractional anisotropy (FA) in arcuate fasciculus following music-cued motor training. Brain and Cognition, 116, 40-46. https://doi.org/10.1016/j.bandc.2017.05.001

Moulton C. (2014). Perfect pitch reconsidered. Clinical medicine, 14(5), 517-519. https://doi.org/10.7861/clinmedicine.14-5-517

Norgaard, M., Stambaugh, L. A., & McCranie, H. (2019). The Effect of Jazz Improvisation Instruction on Measures of Executive Function in Middle School Band Students. Journal of Research in Music Education, 67(3), 339-354. https://doi.org/10.1177/0022429419863038

Oechslin, M.S., Imfeld, A., Loenneker, T., Meyer, M., & Jäncke, L. (2010). The plasticity of the superior longitudinal fasciculus as a function of musical expertise: a diffusion tensor imaging study. Frontiers in Human Neuroscience, 10, 76. https://doi.org/10.3389/neuro.09.076.2009

Olszewska, A. M., Gaca, M., Herman, A. M., Jednoróg, K., & Marchewka, A. (2021). How Musical Training Shapes the Adult Brain: Predispositions and Neuroplasticity. Frontiers in Neuroscience, 15, 630829. https://doi.org/10.3389/fnins.2021.630829

Penhune, V. B. (2011). Sensitive periods in human development: Evidence from musical training. Cortex, 47(9), 1126-1137. https://doi.org/10.1016/j.cortex.2011.05.010

Penhune, V. B. (2019). Musical expertise and brain structure: the causes and consequences of training. En Michael H. Thaut and Donald A. Hodges (Eds). The Oxford handbook of music and the brain (pp. 417-438). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198804123.013.17

Penhune, V. B. (2020). A gene-maturation-environment model for understanding sensitive period effects in musical training. Current Opinion in Behavioral Sciences, 36, 13-22. https://doi.org/10.1016/j.cobeha.2020.05.011

Penhune, V. B. (2021). Understanding Sensitive Period Effects in Musical Training. En S.L. Andersen (Ed.) Sensitive Periods of Brain Development and Preventive Interventions. Current Topics in Behavioral Neurosciences, 53 (pp. 167-188). Springer. https://doi.org/10.1007/7854_2021_250

Penhune, V. B., & de Villers-Sidani, E. (2014). Time for new thinking about sensitive periods. Frontiers in Systems Neuroscience, 8, 55. https://doi.org/10.3389/fnsys.2014.00055

Pool, E. M., Rehme, A. K., Fink, G. R., Eickhoff, S. B., & Grefkes, C. (2014). Handedness and effective connectivity of the motor system. NeuroImage, 99, 451-460. https://doi.org/10.1016/j.neuroimage.2014.05.048

Ragert, P., Schmidt, A., Altenmüller, E., & Dinse, H. R. (2004), Superior tactile performance and learning in professional pianists: evidence for meta-plasticity in musicians. European Journal of Neuroscience, 19(2), 473-478. https://doi.org/10.1111/j.0953-816X.2003.03142.x

Ramos-Loyo, J., González-Garrido, A. A., Llamas-Alonso, L. A., & Sequeira, H. (2022). Sex differences in cognitive processing: An integrative review of electrophysiological findings. Biological Psychology, 172, 108370. https://doi.org/10.1016/j.biopsycho.2022.108370

Ritchie, S. J., Cox, S. R., Shen, X., Lombardo, M. V., Reus, L. M., Alloza, C., Harris, M. A., Alderson, H. L., Hunter, S., Neilson, E., Liewald, D. C. M., Auyeung, B., Whalley, H. C., Lawrie, S. M., Gale, C. R., Bastin, M. E., McIntosh, A.M., & Deary, I. J. (2018). Sex Differences in the Adult Human Brain: Evidence from 5216 UK BiobankParticipants. Cerebral Cortex, 28(8), 2959-2975. https://doi.org/10.1093/cercor/bhy109

Rose, D., Bartoli, A. J., & Heaton, P. (2019). Formal-informal musical learning, sex and musicians’ personalities. Personality and Individual Differences, 142, 207-213. https://doi.org/10.1016/j.paid.2018.07.015

Ruigrok, A. N. V., Salimi-Khorshidi, G., Lai. M-C., Baron-Cohen, S., Lombardo, M. V., Tait R. J., & Suckling, J. (2014). A meta-analysis of sex differences in human brain structure. Neuroscience and Biobehavioral Reviews, 39(100), 34-50. https://doi.org/10.1016/j.neubiorev.2013.12.004

Shahin, A., Bosnyak, D. J., Trainor, L. J., & Roberts, L. E. (2003). Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. The Journal of Neuroscience, 23(13), 5545-5552. https://doi.org/10.1523/JNEUROSCI.23-13-05545.2003

Shahin, A. J., Roberts, L. E., Chau, W., Trainor, L. J., & Miller, L. M. (2008). Music training leads to the development of timbre-specific gamma band activity. Neuroimage, 41(1), 113-122. https://doi.org/10.1016/j.neuroimage.2008.01.067

Shahin, A., Roberts, L. E., & Trainor, L. J. (2004). Enhancement of auditory cortical development by musical experience in children. Neuroreport, 15(12), 1917-1921. https://doi.org/10.1097/00001756-200408260-00017

Schlaug, G. (2008). Music, musicians, and brain plasticity. En S. Hallam, I. Cross & M. Thaut (Eds). Oxford Handbook of Music Psychology. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199298457.013.0018

Schlaug, G. (2015). Musicians and music making as a model for the study of brain plasticity. En E. Altenmüller, S. Finger, & F. Boller (Eds.). Progress in Brain Research. Music, Neurology, and Neuroscience: Evolution, the Musical Brain, Medical Conditions, and Therapies, 217 (pp. 37-55). Elsevier.

Schulze, K., Gaab, N., & Schlaug, G. (2009). Perceiving pitch absolutely: Comparing absolute and relative pitch possessors in a pitch memory task. BMC Neuroscience, 10, 106. https://doi.org/10.1186/1471-2202-10-106

Seppänen, M., Brattico, E., & Tervaniemi, M. (2007). Practice strategies of musicians modulate neural processing and the learning of sound-patterns. Neurobiology of Learning and Memory, 87(2), 236-247. https://doi.org/10.1016/j.nlm.2006.08.011

Seppänen, M., Hämäläinen, J., Pesonen, A.-K., & Tervaniemi, M. (2012). Music training enhances rapid neural plasticity of n1 and p2 source activation for unattended sounds. Frontiers in Human Neuroscience, 6, 43. https://doi.org/10.3389/fnhum.2012.00043

Shenker, J. J., Steele, C. J., Chakravarty, M. M., Zatorre, R. J., & Penhune, V. B. (2022). Early musical training shapes cortico-cerebellar structural covariation. Brain Structure & Function, 227(1), 407-419. https://doi.org/10.1007/s00429-021-02409-2

Steele, C. J., Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2013). Early Musical Training and White-Matter Plasticity in the Corpus Callosum: Evidence for a Sensitive Period. Journal of Neuroscience, 33(3), 1282-1290. https://doi.org/10.1523/JNEUROSCI.3578-12.2013

Swaminathan, S. & Schellenberg, E. G. (2018). Musical Competence is Predicted by Music Training, Cognitive Abilities, and Personality. Scientific Reports, 8(1), 9223. https://doi.org/10.1038/s41598-018-27571-2

Tan, Y. T., McPherson, G. E., Peretz, I., Berkovic, S. F., & Wilson, S. J. (2014). The genetic basis of music ability. Frontiers in Psychology, 5, 658. https://doi.org/10.3389/fpsyg.2014.00658

Tervaniemi, M., Janhunen, L., Kruck, S., Putkinen, V., & Huotilainen, M. (2016). Auditory Profiles of Classical, Jazz, and Rock Musicians: Genre-Specific Sensitivity to Musical Sound Features. Frontiers in Psychology, 6, 1900. https://doi.org/10.3389/fpsyg.2015.01900

Tervaniemi, M., Rytkönen, M., Schröger, E., Ilmoniemi, R. J., & Näätänen, R. (2001). Superior formation of cortical memory traces for melodic patterns in musicians. Learning & Memory, 8(5), 295-300. https://doi.org/10.1101/lm.39501

van Vugt, F. T., Hartmann, K., Altenmüller, E., Mohammadi, B., & Margulies, D.S. (2021). The impact of early musical training on striatal functional connectivity. Neuroimage, 238, 118251. https://doi.org/10.1016/j.neuroimage.2021.118251

Vaquero, L., Hartmann, K., Ripollés, P., Rojo, N., Sierpowska, J., François, C., Càmara, E., van Vugt, F. T., Mohammadi, B., Samii, A., Münte, T. F., Rodríguez-Fornells, A., & Altenmüller, E. (2016). Structural neuroplasticity in expert pianists depends on the age of musical training onset. Neuroimage, 126, 106-119. https://doi.org/10.1016/j.neuroimage.2015.11.008

Vaquero, L., Rousseau, P. N., Vozian, D., Klein, D., & Virginia, P. (2020). What you learn & when you learn it: Impact of early bilingual & music experience on the structural characteristics of auditory-motor pathways. Neuroimage, 213, 116689. https://doi.org/10.1016/j.neuroimage.2020.116689

Voskuhl, R. & Klein, S. (2019). Sex is a variable in the brain too. Nature, 568(7751), 171. https://doi.org/10.1038/d41586-019-01141-6

Vuust, P., Brattico, E., Seppänen, M., Näätänen, R., & Tervaniemi, M. (2012a). Practiced musical style shapes auditory skills. Annals of the New York Academy of Sciences, 1252(1), 139-146. https://doi.org/10.1111/j.1749-6632.2011.06409.x

Vuust, P., Brattico, E., Seppänen, M., Näätänen, R., & Tervaniemi, M. (2012b). The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia, 50(7), 1432-1443. https://doi.org/10.1016/j.neuropsychologia.2012.02.028

Wan, C., & Schlaug, G. (2010). Music making as a tool for promoting brain plasticity across the life span. Neuroscientist, 16(5), 566-577. https://doi.org/10.1177/1073858410377805

Walhovd, K.B., Fjell, A. M., Reinvang, I., Lundervold, A., Dale, A. M., Eilertsen, D. E., Quinn, B. T., Salat, D., Makris, N., & Fischl, B. (2005). Effects of age on volumes of cortex, white matter and subcortical structures. Neurobioly of Aging, 26(9), 1261-1270. https://doi.org/10.1016/j.neurobiolaging.2005.05.020

Walhovd, K. B., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I. R., Raz, N., Agartz, I., Salat, D. H., Greve, D. N., Fischl, B., Dale, A. M., & Fjell, A. M. (2011). Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiology of Aging, 32(5), 916-932. https://doi.org/10.1016/j.neurobiolaging.2009.05.013

Ward, W. D., & Burns, E. M. (1982). Absolute Pitch. En D. Deutsch (Ed.). The Psychology of music (pp. 431-451). Academic Press.

Watanabe, D., Savion-Lemieux, T., & Penhune, V. B. (2007). The effect of early musical training on adult motor performance: evidence for a sensitive period in motor learning. Experimental Brain Research, 176(2), 332-340. https://doi.org/10.1007/s00221-006-0619-z

Wengenroth, M., Blatow, M., Heinecke, A., Reinhardt, J., Stippich, C., Hofmann, E., & Schneider, P. (2014). Increased Volume and Function of Right Auditory Cortex as a Marker for Absolute Pitch. Cerebral Cortex, 24(5), 1127-1137. https://doi.org/10.1093/cercor/bhs391

Wenhart, T., Bethlehem, R., Baron-Cohen, S., & Altenmüller, E. (2019). Autistic traits, resting-state connectivity, and absolute pitch in professional musicians: shared and distinct neural features. Molecular autism, 10, 20. https://doi.org/10.1186/s13229-019-0272-6

White-Schwoch, T., Carrr, K. W., Anderson, S., Strait, D. L., & Kraus, N. (2013). Older adults benefit from music training early in life: biological evidence for long-term training-driven plasticity. The Journal of Neuroscience, 33(45), 17667-17674. https://doi.org/10.1523/JNEUROSCI.2560-13.2013

Wilson, S. J., Lusher, D., Wan, C. Y., Dudgeon, P., & Reutens, D. C. (2009). The neurocognitive components of pitch processing: insights from absolute pitch. Cerebral Cortex, 19, 724-732. https://doi.org/10.1093/cercor/bhn121

Wizemann, T. M., & Pardue, M. L. (eds.) (2001). Exploring the Biological Contributions to Human Health: Does Sex Matter?. National Academies Press.

Zarate, J. M., & Zatorre, R. J. (2008). Experience-dependent neural substrates involved in vocal pitch regulation during singing. Neuroimage, 40(4), 1871-1887. https://doi.org/10.1016/j.neuroimage.2008.01.026

Zatorre, R. J. (2003). Absolute Pitch: A Model for Understanding the Influence of Genes and Development on Neural and Cognitive Function. Nature Neuroscience, 6(7), 692-695. https://doi.org/10.1038/nn1085

Zatorre, R. J. (2013). Predispositions and Plasticity in Music and Speech Learning: Neural Correlates and Implications. Science, 342(6158), 585-589. https://doi.org/10.1126/science.1238414

Zatorre, R. J., Perry, D. W., Beckett, C. A., Westbury, C. F., & Evans, A. C. (1998). Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 3172-3177. https://doi.org/10.1073/pnas.95.6.3172

Zhu, Y. (2018). Influence of music training on the plasticity of the brain. NeuroQuantology, 16(5), 234-239. https://doi.org/.14704/nq.2018.16.5.1409

Downloads

Published

2022-12-29

How to Cite

Revisiting the conditioning variables of neuroplasticity induced by music training. (2022). TECHNO REVIEW. International Technology, Science and Society Review Revista Internacional De Tecnología, Ciencia Y Sociedad, 12(3), 1-14. https://doi.org/10.37467/revtechno.v11.4408