Skip to main content Skip to main navigation menu Skip to site footer

Multifunctional nanoscale metal-organic frameworks-polymer composites for biomedical applications

  • Tahir Rasheed
  • Fahmeeda Kausar
  • Muhammad Tuoqeer Anwar
  • Ayesha Jahangir
  • Muhammad Bilal
  • Hafiz M.N. Iqbal

Abstract

Metal-organic frameworks (MOFs) are an emerging class of materials with unique properties such as extensive surface area, good stability, and high porosity, which facilitate their deployment in various fields of science, including nanomedicine. Numerous strategies have been proposed for designing nanoscale MOF-polymer composites with tailored properties. Polymers can be incorporated inside and outside of the MOF pores to prepare such composites. Polymers are directly grafted to the MOF wall via covalent linkages or physical coordination with the host. Though MOFs are associated with drawbacks like unrestrained liberation, placing of biomolecules/drugs, and less resilience under various physical conditions, a set of advantageous attributes have also been noticed, such as tuning capability and pore size of undecorated MOFs. Novel strategies have been developed to improve MOFs' functioning for bio-imaging, cancer treatment, and drug delivery. For this, the introduction of polymers has proved helpful in expanding the functionalities and diversities of MOFs. Owing to the benefits like a controlled release of drugs in response to extrinsic stimuli, boosted inclination towards targeted cells, intensified MOF durability, and increased biocompatibility, MOF-polymer composites are excellent sources of helpful implementation in the biomedical field. This study provides insight into the synthesis and performance of MOF-polymer composite as a novel candidate in the biomedical sector.

Section

References

  1. Allen, C. A., & Cohen, S. M. (2014). Exploration of Chemically Cross-Linked Metal–Organic Frameworks. Inorganic Chemistry, 53(13), 7014-7019.
  2. Allen, C. A., Boissonnault, J. A., Cirera, J., Gulland, R., Paesani, F., & Cohen, S. M. (2013). Chemically crosslinked isoreticular metal–organic frameworks. Chemical Communications, 49(31), 3200-3202.
  3. Ayala, S., Bentz, K. C., & Cohen, S. M. (2019). Block co-polyMOFs: morphology control of polymer–MOF hybrid materials. Chemical science, 10(6), 1746-1753.
  4. Ayala, S., Zhang, Z., & Cohen, S. M. (2017). Hierarchical structure and porosity in UiO-66 polyMOFs. Chemical Communications, 53(21), 3058-3061.
  5. Bilal, M., Adeel, M., Rasheed, T., & Iqbal, H. M. (2019). Multifunctional metal–organic frameworks-based biocatalytic platforms: recent developments and future prospects. Journal of Materials Research and Technology, 8(2), 2359-2371.
  6. Canivet, J., Fateeva, A., Guo, Y., Coasne, B., & Farrusseng, D. (2014). Water adsorption in MOFs: fundamentals and applications. Chemical Society Reviews, 43(16), 5594-5617.
  7. Colombo, V., Galli, S., Choi, H. J., Han, G. D., Maspero, A., Palmisano, G., ... & Long, J. R. (2011). High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chemical Science, 2(7), 1311-1319.
  8. Cowie, J. M. G., & Arrighi, V. (2007). Polymers: chemistry and physics of modern materials. CRC press.
  9. Darunte, L. A., Oetomo, A. D., Walton, K. S., Sholl, D. S., & Jones, C. W. (2016). Direct air capture of CO2 using amine functionalized MIL-101 (Cr). ACS Sustainable Chemistry & Engineering, 4(10), 5761-5768.
  10. Ding, M., Cai, X., & Jiang, H. L. (2019). Improving MOF stability: approaches and applications. Chemical Science, 10(44), 10209-10230.
  11. Ding, N., Li, H., Feng, X., Wang, Q., Wang, S., Ma, L., ... & Wang, B. (2016). Partitioning MOF-5 into confined and hydrophobic compartments for carbon capture under humid conditions. Journal of the American Chemical Society, 138(32), 10100-10103.
  12. Ejima, H., Yanai, N., Best, J. P., Sindoro, M., Granick, S., & Caruso, F. (2013). Near‐Incompressible Faceted Polymer Microcapsules from Metal‐Organic Framework Templates. Advanced Materials, 25(40), 5767-5771.
  13. Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The chemistry and applications of metal-organic frameworks. Science, 341(6149), 1230444.
  14. Gu, Y., Huang, M., Zhang, W., Pearson, M. A., & Johnson, J. A. (2019). PolyMOF nanoparticles: dual roles of a multivalent polyMOF ligand in size control and surface functionalization. Angewandte Chemie, 131(46), 16829-16834.
  15. Hidalgo, T., Giménez-Marqués, M., Bellido, E., Avila, J., Asensio, M. C., Salles, F., ... & Horcajada, P. (2017). Chitosan-coated mesoporous MIL-100 (Fe) nanoparticles as improved bio-compatible oral nanocarriers. Scientific reports, 7(1), 1-14.
  16. Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., ... & Gref, R. (2010). Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature materials, 9(2), 172-178.
  17. Horcajada, P., Serre, C., Vallet‐Regí, M., Sebban, M., Taulelle, F., & Férey, G. (2006). Metal–organic frameworks as efficient materials for drug delivery. Angewandte chemie, 118(36), 6120-6124.
  18. Hou, L., Wang, L., Zhang, N., Xie, Z., & Dong, D. (2016). Polymer brushes on metal–organic frameworks by UV-induced photopolymerization. Polymer Chemistry, 7(37), 5828-5834.
  19. Jiao, L., & Jiang, H. L. (2019). Metal-organic-framework-based single-atom catalysts for energy applications. Chem, 5(4), 786-804.
  20. Kim, K., Lee, S., Jin, E., Palanikumar, L., Lee, J. H., Kim, J. C., ... & Ryu, J. H. (2019). MOF× biopolymer: collaborative combination of metal–organic framework and biopolymer for advanced anticancer therapy. ACS applied materials & interfaces, 11(31), 27512-27520.
  21. Kitao, T., Bracco, S., Comotti, A., Sozzani, P., Naito, M., Seki, S., ... & Kitagawa, S. (2015). Confinement of single polysilane chains in coordination nanospaces. Journal of the American Chemical Society, 137(15), 5231-5238.
  22. Kitao, T., Zhang, Y., Kitagawa, S., Wang, B., & Uemura, T. (2017). Hybridization of MOFs and polymers. Chemical Society Reviews, 46(11), 3108-3133.
  23. Kobayashi, Y., Horie, Y., Honjo, K., Uemura, T., & Kitagawa, S. (2016). The controlled synthesis of polyglucose in one-dimensional coordination nanochannels. Chemical Communications, 52(29), 5156-5159.
  24. Le Ouay, B., Takaya, H., & Uemura, T. (2019). Controlling the packing of metal–organic layers by inclusion of polymer guests. Journal of the American Chemical Society, 141(37), 14549-14553.
  25. Le Ouay, B., Watanabe, C., Mochizuki, S., Takayanagi, M., Nagaoka, M., Kitao, T., & Uemura, T. (2018). Selective sorting of polymers with different terminal groups using metal-organic frameworks. Nature communications, 9(1), 1-8.
  26. Li, P., Chen, Q., Wang, T. C., Vermeulen, N. A., Mehdi, B. L., Dohnalkova, A., ... & Farha, O. K. (2018). Hierarchically engineered mesoporous metal-organic frameworks toward cell-free immobilized enzyme systems. Chem, 4(5), 1022-1034.
  27. Li, Y., Liu, J., Zhang, K., Lei, L., & Lei, Z. (2018). UiO-66-NH2@ PMAA: A hybrid Polymer–MOFs architecture for pectinase immobilization. Industrial & Engineering Chemistry Research, 57(2), 559-567.
  28. Liang, K., Ricco, R., Doherty, C. M., Styles, M. J., Bell, S., Kirby, N., ... & Falcaro, P. (2015). Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature communications, 6(1), 1-8.
  29. Liu, C. S., Chen, M., Tian, J. Y., Wang, L., Li, M., Fang, S. M., ... & Du, M. (2017). Metal–Organic Framework Supported on Processable Polymer Matrix by In Situ Copolymerization for Enhanced Iron (III) Detection. Chemistry–A European Journal, 23(16), 3885-3890.
  30. Liu, H., Zhu, H., & Zhu, S. (2015). Reversibly Dispersible/Collectable Metal‐Organic Frameworks Prepared by Grafting Thermally Responsive and Switchable Polymers. Macromolecular Materials and Engineering, 300(2), 191-197.
  31. Liu, L., Zhou, X., Yan, Y., Zhou, J., Zhang, W., & Tai, X. (2018). Bimetallic gold-silver nanoparticles supported on zeolitic imidazolate framework-8 as highly active heterogenous catalysts for selective oxidation of benzyl alcohol into benzaldehyde. Polymers, 10(10), 1089.
  32. Lu, C., Ben, T., Xu, S., & Qiu, S. (2014). Electrochemical synthesis of a microporous conductive polymer based on a metal–organic framework thin film. Angewandte Chemie, 126(25), 6572-6576.
  33. Lyu, F., Zhang, Y., Zare, R. N., Ge, J., & Liu, Z. (2014). One-pot synthesis of protein-embedded metal–organic frameworks with enhanced biological activities. Nano letters, 14(10), 5761-5765.
  34. Ma, Y., Qu, X., Liu, C., Xu, Q., & Tu, K. (2021). Metal-Organic Frameworks and Their Composites Towards Biomedical Applications. Frontiers in molecular biosciences, 8, 805228.
  35. MacLeod, M. J., & Johnson, J. A. (2017). Block co-polyMOFs: assembly of polymer–polyMOF hybrids via iterative exponential growth and “click” chemistry. Polymer Chemistry, 8(31), 4488-4493.
  36. Mon, M., Bruno, R., Tiburcio, E., Viciano-Chumillas, M., Kalinke, L. H., Ferrando-Soria, J., ... & Pardo, E. (2019). Multivariate metal–organic frameworks for the simultaneous capture of organic and inorganic contaminants from water. Journal of the American Chemical Society, 141(34), 13601-13609.
  37. Nagata, S., Kokado, K., & Sada, K. (2015). Metal–organic framework tethering PNIPAM for ON–OFF controlled release in solution. Chemical Communications, 51(41), 8614-8617.
  38. Peng, L., Yang, S., Jawahery, S., Moosavi, S. M., Huckaba, A. J., Asgari, M., ... & Queen, W. L. (2019). Preserving porosity of mesoporous metal–organic frameworks through the introduction of polymer guests. Journal of the American Chemical Society, 141(31), 12397-12405.
  39. Peng, L., Yang, S., Sun, D. T., Asgari, M., & Queen, W. L. (2018). MOF/polymer composite synthesized using a double solvent method offers enhanced water and CO 2 adsorption properties. Chemical Communications, 54(75), 10602-10605.
  40. Qian, X., Sun, F., Sun, J., Wu, H., Xiao, F., Wu, X., & Zhu, G. (2017). Imparting surface hydrophobicity to metal–organic frameworks using a facile solution-immersion process to enhance water stability for CO 2 capture. Nanoscale, 9(5), 2003-2008.
  41. Schukraft, G. E., Ayala, S., Dick, B. L., & Cohen, S. M. (2017). Isoreticular expansion of polyMOFs achieves high surface area materials. Chemical Communications, 53(77), 10684-10687.
  42. Shang, L., Yu, H., Huang, X., Bian, T., Shi, R., Zhao, Y., ... & Zhang, T. (2016). Well‐dispersed ZIF‐derived Co, N‐co‐doped carbon nanoframes through mesoporous‐silica‐protected calcination as efficient oxygen reduction electrocatalysts. Advanced Materials, 28(8), 1668-1674.
  43. Shen, Y., Li, Z., Wang, L., Ye, Y., Liu, Q., Ma, X., ... & Xiang, S. (2015). Cobalt–citrate framework armored with graphene oxide exhibiting improved thermal stability and selectivity for biogas decarburization. Journal of Materials Chemistry A, 3(2), 593-599.
  44. Sun, D. T., Peng, L., Reeder, W. S., Moosavi, S. M., Tiana, D., Britt, D. K., ... & Queen, W. L. (2018). Rapid, selective heavy metal removal from water by a metal–organic framework/polydopamine composite. ACS central science, 4(3), 349-356.
  45. Takashima, Y., Fukudome, K., Horikoshi, A., Tsuruoka, T., & Akamatsu, K. (2018). Wrapping flexible metal–organic framework with organic polymers via site-specific radical polymerization from its crystal surface. Polyhedron, 155, 275-280.
  46. Tanabe, K. K., & Cohen, S. M. (2011). Postsynthetic modification of metal–organic frameworks—a progress report. Chemical Society Reviews, 40(2), 498-519.
  47. Teplensky, M. H., Fantham, M., Poudel, C., Hockings, C., Lu, M., Guna, A., ... & Fairen-Jimenez, D. (2019). A highly porous metal-organic framework system to deliver payloads for gene knockdown. Chem, 5(11), 2926-2941.
  48. Todaro, M., Buscarino, G., Sciortino, L., Alessi, A., Messina, F., Taddei, M., ... & Gelardi, F. M. (2016). Decomposition process of carboxylate MOF HKUST-1 unveiled at the atomic scale level. The Journal of Physical Chemistry C, 120(23), 12879-12889.
  49. Uemura, T., Kadowaki, Y., Yanai, N., & Kitagawa, S. (2009). Template synthesis of porous polypyrrole in 3D coordination nanochannels. Chemistry of Materials, 21(18), 4096-4098.
  50. Uemura, T., Kitagawa, K., Horike, S., Kawamura, T., Kitagawa, S., Mizuno, M., & Endo, K. (2005). Radical polymerisation of styrene in porous coordination polymers. Chemical communications, (48), 5968-5970.
  51. Uemura, T., Kitaura, R., Ohta, Y., Nagaoka, M., & Kitagawa, S. (2006). Nanochannel‐promoted polymerization of substituted acetylenes in porous coordination polymers. Angewandte Chemie International Edition, 45(25), 4112-4116.
  52. Uemura, T., Yanai, N., Watanabe, S., Tanaka, H., Numaguchi, R., Miyahara, M. T., ... & Kitagawa, S. (2010). Unveiling thermal transitions of polymers in subnanometre pores. Nature communications, 1(1), 1-8.
  53. Wang, K., Lv, X. L., Feng, D., Li, J., Chen, S., Sun, J., ... & Zhou, H. C. (2016). Pyrazolate-based porphyrinic metal–organic framework with extraordinary base-resistance. Journal of the American Chemical Society, 138(3), 914-919.
  54. Wang, W., Wang, L., Li, Y., Liu, S., Xie, Z., & Jing, X. (2016). Nanoscale polymer metal–organic framework hybrids for effective photothermal therapy of colon cancers. Advanced Materials, 28(42), 9320-9325.
  55. Yang, S., Karve, V. V., Justin, A., Kochetygov, I., Espin, J., Asgari, M., ... & Queen, W. L. (2021). Enhancing MOF performance through the introduction of polymer guests. Coordination Chemistry Reviews, 427, 213525.
  56. Yang, S., Peng, L., Sun, D. T., Asgari, M., Oveisi, E., Trukhina, O., ... & Queen, W. L. (2019). A new post-synthetic polymerization strategy makes metal–organic frameworks more stable. Chemical science, 10(17), 4542-4549.
  57. Yin, Z., Wan, S., Yang, J., Kurmoo, M., & Zeng, M. H. (2019). Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions. Coordination Chemistry Reviews, 378, 500-512.
  58. Yu, J., Mu, C., Yan, B., Qin, X., Shen, C., Xue, H., & Pang, H. (2017). Nanoparticle/MOF composites: preparations and applications. Materials Horizons, 4(4), 557-569.
  59. Zhang, W., Hu, Y., Ge, J., Jiang, H. L., & Yu, S. H. (2014). A facile and general coating approach to moisture/water-resistant metal–organic frameworks with intact porosity. Journal of the American Chemical Society, 136(49), 16978-16981.
  60. Zhang, Z., Nguyen, H. T. H., Miller, S. A., & Cohen, S. M. (2015). polyMOFs: a class of interconvertible polymer‐metal‐organic‐framework hybrid materials. Angewandte Chemie International Edition, 54(21), 6152-6157.
  61. Zhang, Z., Nguyen, H. T. H., Miller, S. A., Ploskonka, A. M., DeCoste, J. B., & Cohen, S. M. (2016). Polymer–metal–organic frameworks (polyMOFs) as water tolerant materials for selective carbon dioxide separations. Journal of the American Chemical Society, 138(3), 920-925.
  62. Zimpel, A., Preiß, T., Röder, R., Engelke, H., Ingrisch, M., Peller, M., ... & Wuttke, S. (2016). Imparting functionality to MOF nanoparticles by external surface selective covalent attachment of polymers. Chemistry of Materials, 28(10), 3318-3326.

How to Cite

Multifunctional nanoscale metal-organic frameworks-polymer composites for biomedical applications. (2022). Biomaterials and Polymers Horizon, 1(3). https://doi.org/10.37819/bph.001.03.0262

How to Cite

Multifunctional nanoscale metal-organic frameworks-polymer composites for biomedical applications. (2022). Biomaterials and Polymers Horizon, 1(3). https://doi.org/10.37819/bph.001.03.0262

HTML
286

Total
22 88

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2022 Tahir Rasheed, Fahmeeda Kausar, Muhammad Tuoqeer Anwar, Ayesha Jahangir, Muhammad Bilal, Hafiz M.N. Iqbal

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.