Skip to main content Skip to main navigation menu Skip to site footer

Synthesis and Characterization of Imidazole Based Cationic Surfactants as Disinfectants


Citric acid-based cationic surfactants using 1-methyl imidazolium as coordinizing agent has been synthesized and characterized. The cationic surfactants is produced in excellent yields (70%) and has been examined by TGA, FTIR, 1H NMR and are found to have good surface-active properties. FTIR analysis showed the presence of ester confirmed by 1H NMR (the chemical shift value of 3.7 ppm and 3.8 ppm is due to the presence of an ester) in the surfactant. The biodegradability confirmed by BOD analysis. It is found that cationic imidazolium surfactants having surface tenstion of (12 mN/m) with chloride as a counter ion. The results show that cationic imidazolium surfactants with longer hydrophobic chains have a lower CMC value. TGA result shows good thermal properties of cationic surfactant. Invitro study of cationic surfactant over fungal cell indicates its antifungal activity (70% inhibition at 350 ppm) and its appliaction as disinfactant.



  1. .M. Blesic, M. H. Marques, N. V. Plechkova, K. R. Seddon, L. P. N. Rebelo, A. Lopes: Self-aggregation of ionic liquids: Micelle formation in aqueous solution, Green Chem., 2007, 9, 481–490.
  2. S. Kanjilal , S. Sunitha, P. S. Reddy, K. P. Kumar, U. S. N. Murty, R. B. N. Prasad, Synthesis and evaluation of micellar properties and antimicrobial activities of imidazole-based surfactants, Eur. J. Lipid Sci. Technol., 2009, 111, 941–948.
  3. P. Patial, A. Shaheen, I. Ahmad, Synthesis, Characterization and Evaluation of the Surface Active Properties of Novel Cationic Imidazolium Gemini Surfactants, J Surfact Deterg., 2014, 17,253–260.
  4. J. Nowicki, Emulsion properties and phase equilibrium of new asymmetric Gemini surfactants consisting of fatty acids ester of polyethoxylated alcohol or phenol, J Surf Deterg., 2010, 13, 195–199.
  5. R. Zana Preparation and properties of new ester-linked cleavable Gemini surfactants. Adv Colloid Interface Sci., 2002, 97, 203–207.
  6. A. R. Tehrani-Bagha, K. Holmberg, C. Opin, Reactions and synthesis in surfactant systems, J Colloid Interface Sci., 2007, 12, 81–84.
  7. E. M. S. Azzam, Effect of alkyl groups in anionic surfactants on solution properties of of anionic-nonionic surfactant systems, J Surf Deterg., 2001, 4, 293–296.
  8. S. M. Shaban, I. Aiad, A. R. Ismail, Surface parameters and biological activity of N-(3-(dimethyl benzyl ammonio)propyl) alkanamide chloride cationic surfactants, Journal of Surfactants and Detergents., 2016, 19, 501–510.
  9. S. A. Madbouly, Bio-based castor oil and lignin sulphonate: aqueous dispersions and shape-memory films, Biomaterials and Polymers Horizon (2022) 1(2), 32-47.
  10. Ran Chen, Junfeng Liu, Zeyong Sun and Dong Chen, Functional Nanofibers with Multiscale Structure by Electrospinning, Nanofabrication 2018, 4, 17–31.
  11. C. Gozlan , E. Deruer , M.-C. Duclos , V. Molinier , J.-M. Aubry , A. Redl , N. Duguet, M. Lemaire, Preparation of amphiphilic sorbitan monoethers through hydrogenolysis of sorbitan acetals and evaluation as bio-based surfactants, Green Chem., 2016, 18 , 1994 -2004 .
  12. C. P. Canlas , T. J. Pinnavaia, Bio-derived Oleyl surfactants as porogens for the sustainable synthesis of micelle-templated mesoporous silica, RSC Adv., 2012, 2 , 7449.
  13. C. Schmitt , B. Grassl , G. Lespes , J. Desbrières , V. Pellerin , S. Reynaud , J. Gigault and V. A. Hackley , Saponins: A renewable and biodegradable surfactants from its microwave-asssisted extraction to the synthesis of monodisperse lattices, Biomacromolecules., 2014, 15 , 856 —862 .
  14. K. S. Arias , M. J. Climent , A. Corma and S. Iborra , Biomass derived chemicals: synthesis of biodegradable surfactant ether molecules and hydroxy-methylfurfural, ChemSusChem., 2013, 7 , 210-220.
  15. M. A. Migahed, Ahmed Nasser, H. Elfeky and M. M. EL-Rabiei,, The synthesis and characterization of benzotriazole-based cationic surfactants and the evaluation of their corrosion inhibition efficiency on copper in seawater, RSC Adv., 2019,9, 27069-27082
  16. K. Sakai, Y. Saito, A. Uka, W. Matsuda, Y. Takamatsu, B. Kitiyanan , T. Endo, H. Sakai and M. Abe, Quartenary ammonium type Gemini surfactants synthesized from oleic acid:aqueous solution properties and adsorption characteristics, J. Oleo Sci., 2013, 62 , 489-498.
  17. V. K. kallepan, J.E. Moore, T. M. McCoy, A. V. Sokolova, L. D. Campo, B. L. Wilkinson, R. F. tabaor, Self-assembly long chain betaine surfactants: Effect of tailgroup structure on wormlike micelle formation, Chem. Commun., 2018, 34, 3, 970-977.
  18. Y. Hu , W. Zou , V. Julita , R. Ramanathan , R. F. Tabor , R. Nixon-Luke , G. Bryant , V. Bansal and B. L. Wilkinson, Photomodulation of bacterial growth and biofilm formation using carbohydrate-based surfactants, Chem. Sci., 2016, 7 , 6628 —6634.
  19. A. Pinazo , R. Pons , P. Lourdes and M. R. Infante, New cationic vesicles prepared with double chain surfactants from argenine: Role of hydrophobic group on the antimicrobial activity and cytotoxicity, Ind. Eng. Chem. Res., 2011, 50 , 4805 —4817.
  20. F. Goursaud, M. Berchel , J. Guilbot , N. Legros , L. Lemiègre , J. Marcilloux , D. Plusquellec and T. Benvegnu, Glycine betiane as a renewable raw material to greener new surfactant, Green Chem., 2008, 10 , 310.
  21. Shingo Urata, An-Tsung Kuo and Hidenobu Murofushi, Self-assembly of the cationic surfactant n-hexadecyl-trimethylammonium chloride in methyltrimethoxysilane aqueous solution: classical and reactive molecular dynamics simulations, Phys. Chem. Chem. Phys., 2021,23, 14486-14495.
  22. A. Jordan, N. Gathergood, Biodegradation of ionic liquids-a critical review, Chem. Soc. Rev., 2015, 44, 8200–8237.
  23. A. Bhadani, K. Iwabata, Kenichi Sakai, S. Koura, H. Sakaia and M. Abe Sustainable oleic and stearic acid based biodegradable surfactants, RSC Adv., 2017,7, 10433-10442.
  24. S. Kumar, P. Goel, J. P. Singh, Flexibile and robust SERS active substrates for conformal rapid detection of pesticide residues from fruits, Sensor and Actuators B: Chemical., 2007, 241, 577-583.
  25. A. Kalita, S. Hussain, A. H. Malik, U. Barman, N. Goswami and P. K. Iyer, Conmjugated polymer nanoparticles for the amplified detection of Nitro-explosive Picric acid on multiple platforms, ACS Appl. Mater. Interfaces., 2016, 8, 25326–25336.
  26. R. Rondla, Benzene centered tripodal immidazolium (BTI) system: Emerged towards multidisplinary research and development, Inorganica Chimica Act., 2018, 477, 183-191.
  27. N. N. Al-Mohammed, R. S. D. Hussen, Y. Alias and Z. Abdullah, Tris-immidazolium benzimmidazolium ionic liquids: a new class of biodegradable surfactants,RSC Adv., 2015, 5, 2869–2881.
  28. R. O. Dunn, J. F. Scamehorn and S. D. Christian, Concenteration polarization effects in use of micellar-enhanced ultrafiltration to remove dissolved organic pollutants from wastewater, Colloids and surfaces., 1989, 35, 49-56.
  29. C. Tondre, S. G. Son, M. Hebrant, P. Scrimin and P. Tecilla, Copper (II) complexation by 6-(alkylamino) methyl-2-hydroxymethylpyridines with varying alkyl chain length in aqueous solutions, Langmuir., 1993, 9, 950-955.
  30. M. M Deriszadeh Husein, T. G. Harding, Role of naphthenic acid contaminants in the removal of p-xylene from synthetic produced water by MEUF, Environmental science & technology., 2010, 44, 1767-1772.
  31. M. Schwarze, M. Groß, M. Moritz, G. Buchner, L. Kapitzki, L. Chiappisi and M. Gradzielski, Journal of Membrane Science., 2015, 478, 140-147.
  32. I. Aiad, M. A. Riya, S. M. Tawfik, M. A. Abousehly, Protection of carbon steel against corrosion in hydrochloric acid solution by some synthesized cationic surfactants, Protect Met Phys Chem Surf., 2016, 52, 339–347.
  33. R. Sharma, A. Kamal, M. Abdinejad, R. K. Mahajan, H. B. Kraatz, Advances in the synthesis, molecular architectures and potential applications of gemini surfactants, Adv Colloid Interface Sci., 2017, 248, 35–68.
  34. T. Banno, K. Kawada, S. Matsumura, Creation of novel green and sustainable gemini-type cationics containing carbonate linkages, J Surfact Deterg., 2010, 13, 387–398.
  35. S. C. Biswas and D. K. Chattoraj, Kinetics of adsorption of cationic surfactants at silica–water interface, J Colloid Interface Sci., 1998, 205, 12–20.
  36. D. Shukla and V. K. Tyagi, Cationic gemini surfactants: a review, J Oleo Sci., 2006, 55, 381–390.
  37. A. Singh, J. D. Van Hamme, O. P. Ward, Surfactants in microbiology and biotechnology: Part 2. Application aspects, Biotechnol Adv., 2007, 25, 99–121.
  38. G. Kostov, F. Boschet, J. Buller, L. Badache, S. Brandsadter, B. Ameduri, (2011) First amphiphilic poly(vinylidene fluoride-co3,3,3-trifluoropropene)-b-oligo(vinyl alcohol) block copolymers as potential nonpersistent fluoro surfactants from radical polymerization controlled by xanthate, Macromolecules., 2011, 44, 1841–1855.
  39. M. P. Krafft, J. G. Riess, highly fluorinated amphiphiles and colloidal systems, and their applications in the biomedical field. A contribution, Biochimie., 1998, 80, 489–514.
  40. Y. Fang, X. F. Liu, Y. M. Xia, Y. Yang, K. Cai, J. M. Suh, H. Y. Cho, Determination of critical micellar aggregation numbers by steady-state fluorescence probe method, Acta PhysicoChimica Sinica., 2001, 17, 828–831.
  41. P. D. Galgano, O. A. Seoud, Micellar properties of surface active ionic liquids: A comparison of 1-hexadecyl3-methylimidazolium chloride with structurally related cationic surfactants, Journal of Colloid and Interface Science., 2010, 345, 1–11.
  42. E. Alami, G. Beinert, P. Marie, R. Zana, Alkanediyl-. alpha.,.omega.-bis (dimethylalkylammonium bromide) surfactants, Behavior at the air-water interface. Langmuir., 1993, 9, 1465–1467.
  43. I. Mnif, D. Ghribi, Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry, J Sci Food Agric., 2016, 96, 4310-20.
  44. I. A. Aiad, A. M. Badawi, M. M. El-SukkaryM et al. Synthesis and biocidal activity of some Naphthalene-based cationic surfactants, J Surfactants Deterg., 2012, 15, 223– 34.
  45. E. M. Varka, E. Coutouli-Argyropoulou, M. R. Infante MR, Synthesis, characterization, and surface properties of phenylalanine-glycerol ether surfactants, J Surfact Deterg., 2004, 7, 409.
  46. P. U. Singare, J. D. Mhatre, Cationic surfactants from arginine: synthesis and physicochemical properties, Am J Chem., 2012, 2, 186– 90.
  47. E. G. Katarzyna, Synthesis and Surface Activity of Cationic Amino Acid-Based Surfactants in Aqueous Solution, Journal of Surfactants and Detergents., 2017, 20, 1189-1196.
  48. K. Aramksi, E. Takimoto, T. yamaguchi, Effect of the cationic head group on cationic surfactant-based surfactant mediated Gelation (SMG), Int J Mol Sci., 2020, 21, 8046.
  49. D. K. Allen, B. Y. Tao, Carbohydrate alkyl-ester derivatives as bio surfactants, Journal of Surfactants and Detergents., 1999, 2, 383–390.
  50. P. Camilleri, A. Kremer, A. J. Edwards, K. H. Jennings, O. Jenkins, I. Marshall, A. J. Kirby, A novel class of cationic gemini surfactants showing efficient in vitro gene transfection properties, Chemical Communications., 2000, 14, 1253–1254.

How to Cite

Midha, D. ., Singh, H. ., Kour, S. ., Goel, G. ., & Chand, M. B. . (2022). Synthesis and Characterization of Imidazole Based Cationic Surfactants as Disinfectants . Biomaterials and Polymers Horizon, 1(3).





Article Details

Most Read This Month


Copyright (c) 2022 Divya Midha, Hari Singh, Sharanmeet Kour, Gaurav Goel, Mahendra Bahadur Chand

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.