Skip to main content Skip to main navigation menu Skip to site footer

Sequential extraction of carbohydrates and lignin from agricultural waste and their structural characterization

  • A. Mtibe
  • M.J. John
  • J.E. Andrew
  • T.C. Mokhena

Abstract

This work reports on the extraction and characterization of carbohydrates such as cellulose, cellulose nanofibres, hemicellulose, and lignin from agricultural waste, i.e. maize stalks and sugarcane bagasse. The chemical compounds were extracted by hot water extraction (HWE) followed by alkaline extraction with 10 wt.% of sodium hydroxide (NaOH). Cellulose nanofibres (CNF) were isolated by mechanical grinding the cellulose fraction using a supermass colloider. The characteristics of the different fractionated components were investigated using nuclear magnetic resonance (NMR) spectroscopy, elemental analysis, thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy and X-Ray diffraction (XRD). The removal of the hemicellulose, lignin and extractives were confirmed quantitatively by TAPPI standard methods. It was observed that the cellulose content and its crystallinity increased after treating maize stalks and sugarcane bagasse with hot water extraction and alkali treatment. The thermal stability of cellulose also improved after treatments.  Transmission Electron Microscopy (TEM) results confirmed that web-shaped CNF were successfully extracted from the cellulose obtained from sugarcane bagasse and maize stalks. The dimensions of the CNF ranged from 5 to 30 nm in width and a few microns in length. In future studies, the fractionated hemicellulose, lignin and (micro and nano) cellulose will be used as reinforcements in the development of biocomposite materials.

Section

References

  1. Abdel-Halim, E. S. (2014). Chemical modification of cellulose extracted from sugarcane bagasse: Preparation of hydroxyethyl cellulose. Arabian Journal of Chemistry, 7, 362–371. https://doi.org/10.1016/j.arabjc.2013.05.006
  2. Abraham, E., Deepa, B., Pothan, L. a., Jacob, M., Thomas, S., Cvelbar, U., & Anandjiwala, R. (2011). Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydrate Polymers, 86(4), 1468–1475. https://doi.org/10.1016/j.carbpol.2011.06.034
  3. Abraham, E., Deepa, B., Pothen, L. a., Cintil, J., Thomas, S., John, M. J., Anandjiwala, R., & Narine, S. S. (2013). Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydrate Polymers, 92(2), 1477–1483. https://doi.org/10.1016/j.carbpol.2012.10.056
  4. Barana, D., Salanti, A., Orlandi, M., Ali, D. S., & Zoia, L. (2016). Biorefinery process for the simultaneous recovery of lignin, hemicelluloses, cellulose nanocrystals and silica from rice husk and Arundo donax. Industrial Crops and Products, 86, 31–39. https://doi.org/10.1016/j.indcrop.2016.03.029
  5. Chen, L., Zhang, H., Li, J., Lu, M., Guo, X., & Han, L. (2015). A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover. Bioresource Technology, 177, 8–16. https://doi.org/10.1016/j.biortech.2014.11.060
  6. Deepa, B., Abraham, E., Cherian, B. M., Bismarck, A., Blaker, J. J., Pothan, L. a., Leao, A. L., de Souza, S. F., & Kottaisamy, M. (2011). Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresource Technology, 102(2), 1988–1997. https://doi.org/10.1016/j.biortech.2010.09.030
  7. Flauzino Neto, W. P., Silvério, H. A., Dantas, N. O., & Pasquini, D. (2013). Extraction and characterization of cellulose nanocrystals from agro-industrial residue - Soy hulls. Industrial Crops and Products, 42, 480–488. https://doi.org/10.1016/j.indcrop.2012.06.041
  8. García, R., Pizarro, C., Lav??n, A. G., & Bueno, J. L. (2013). Biomass proximate analysis using thermogravimetry. Bioresource Technology, 139, 1–4. https://doi.org/10.1016/j.biortech.2013.03.197
  9. García, R., Pizarro, C., Lavín, A. G., & Bueno, J. L. (2012). Characterization of Spanish biomass wastes for energy use. Bioresource Technology, 103(1), 249–258. https://doi.org/10.1016/j.biortech.2011.10.004
  10. Isaac, A., De Paula, J., Viana, C. M., Henriques, A. B., Malachias, A., & Montoro, L. A. (2018). From nano- to micrometer scale: The role of microwave-assisted acid and alkali pretreatments in the sugarcane biomass structure. Biotechnology for Biofuels, 11(1), 1–11. https://doi.org/10.1186/s13068-018-1071-6
  11. Jin, A. X., Ren, J. L., Peng, F., Xu, F., Zhou, G. Y., Sun, R. C., & Kennedy, J. F. (2009). Comparative characterization of degraded and non-degradative hemicelluloses from barley straw and maize stems: Composition, structure, and thermal properties. Carbohydrate Polymers, 78(3), 609–619. https://doi.org/10.1016/j.carbpol.2009.05.024
  12. Jonoobi, M., Khazaeian, A., Tahir, P. M., Azry, S. S., & Oksman, K. (2011). Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose, 18, 1085–1095. https://doi.org/10.1007/s10570-011-9546-7
  13. Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. Y., & Sheltami, R. M. (2012). Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose, 19, 855–866. https://doi.org/10.1007/s10570-012-9684-6
  14. Kumar, A., Negi, Y. S., Bhardwaj, N. K., & Choudhary, V. (2012). Synthesis and characterization of methylcellulose/PVA based porous composite. Carbohydrate Polymers, 88(4), 1364–1372. https://doi.org/10.1016/j.carbpol.2012.02.019
  15. Kumar, A., Singh Negi, Y., & Bhardwaj, N. K. (2016). Sugarcane Bagasse: A Promising Source for the Production of Nano-Cellulose Papermaking View project molecular docking of amygdalin View project. www.stmjournals.com
  16. Kumar, A., Singh Negi, Y., Choudhary, V., & Kant Bhardwaj, N. (2020). Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste. Journal of Materials Physics and Chemistry, 2(1), 1–8. https://doi.org/10.12691/jmpc-2-1-1
  17. Kumar, A., Sood, A., & Soo Han, S. (2021). Potential of magnetic nano cellulose in biomedical applications: Recent Advances. Biomaterials and Polymers Horizon, 1(1), 32–47. https://doi.org/10.37819/bph.001.01.0133
  18. Lei, M., Zhang, H., Zheng, H., Li, Y., Huang, H., & Xu, R. (2013). Characterization of lignins isolated from alkali treated prehydrolysate of corn stover. Chinese Journal of Chemical Engineering, 21(4), 427–433. https://doi.org/10.1016/S1004-9541(13)60468-1
  19. Li, W., Liu, Q., Ma, Q., Zhang, T., Ma, L., Jameel, H., & Chang, H. min. (2016). A two-stage pretreatment process using dilute hydrochloric acid followed by Fenton oxidation to improve sugar recovery from corn stover. Bioresource Technology, 219, 753–756. https://doi.org/10.1016/j.biortech.2016.08.025
  20. Moghaddam, L., Zhang, Z., Wellard, R. M., Bartley, J. P., O’Hara, I. M., & Doherty, W. O. S. (2014). Characterisation of lignins isolated from sugarcane bagasse pretreated with acidified ethylene glycol and ionic liquids. Biomass and Bioenergy, 70, 498–512. https://doi.org/10.1016/j.biombioe.2014.07.030
  21. Mohtar, S. S., Busu, T. N. Z. T. M., Noor, A. M. M., Shaari, N., & Mat, H. (2017). An ionic liquid treatment and fractionation of cellulose, hemicellulose and lignin from oil palm empty fruit bunch. Carbohydrate Polymers, 166, 291–299. https://doi.org/10.1016/j.carbpol.2017.02.102
  22. Mokhena, T. C., Jacobs, N. V., & Luyt, A. S. (2018). Nanofibrous alginate membrane coated with cellulose nanowhiskers for water purification. Cellulose, 25(1), 417–427. https://doi.org/10.1007/s10570-017-1541-1
  23. Mokhena, T. C., & Luyt, A. S. (2014). Investigation of polyethylene/sisal whiskers nanocomposites prepared under different conditions. Polymer Composites, 35(11), 2221–2233. https://doi.org/10.1002/pc.22887
  24. Mokhena, T. C., & Luyt, A. S. (2017). Electrospun alginate nanofibres impregnated with silver nanoparticles: Preparation, morphology and antibacterial properties. Carbohydrate Polymers, 165, 304–312. https://doi.org/10.1016/j.carbpol.2017.02.068
  25. Motaung, T. E., & Anandjiwala, R. D. (2015). Effect of alkali and acid treatment on thermal degradation kinetics of sugar cane bagasse. Industrial Crops and Products, 74(November 2015), 472–477. https://doi.org/10.1016/j.indcrop.2015.05.062
  26. Motaung, T. E., & Mtibe, A. (2015). Alkali Treatment and Cellulose Nanowhiskers Extracted from Maize Stalk Residues. Materials Sciences and Applications, 6, 1022–1032.
  27. Mtibe, A., Linganiso, L. Z., Mathew, A. P., Oksman, K., John, M. J., & Anandjiwala, R. D. (2015). A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydrate Polymers, 118, 1–8. https://doi.org/10.1016/j.carbpol.2014.10.007
  28. Mtibe, A., Mandlevu, Y., Linganiso, L. Z., & Anandjiwala, R. D. (2015). Extraction of Cellulose Nanowhiskers From Flax Fibres and Their Reinforcing Effect on Poly ( furfuryl ) Alcohol. Journal of Biobased Materials and Bioenergy, 9(3), 309–317. https://doi.org/10.1166/jbmb.2015.1531
  29. Mtibe, A., Mokhena, T. C., Mokhothu, T. H., & Mochane, M. J. (2019). Recent Developments of Polymer Bionanocomposites and Bionanoceramics. In Handbook of Polymer and Ceramic Nanotechnology (pp. 1–22). Springer International Publishing. https://doi.org/10.1007/978-3-030-10614-0_20-1
  30. Mtibe, A., Mokhothu, T. H., John, M. J., Mokhena, T. C., & Mochane, M. J. (2018). Fabrication and characterization of various engineered nanomaterials. In Handbook of Nanomaterials for Industrial Applications. https://doi.org/10.1016/B978-0-12-813351-4.00009-2
  31. Mtibe, A., Mokhothu, T. H., & Linganiso, L. Z. (2018). Maize stalk (Corn stover) to valuable products. In “Waste-to-Profit”? (W-t-P): Value Added Products to Generate Wealth for a Sustainable Economy (Vol. 1).
  32. Oliveira, L., Evtuguin, D. V., Cordeiro, N., Silvestre, A. J. D., Silva, A. M. S., & Torres, I. C. (2006). Structural characterization of lignin from leaf sheaths of “dwarf cavendish” banana plant. Journal of Agricultural and Food Chemistry, 54(7), 2598–2605. https://doi.org/10.1021/jf0528310
  33. Peng, F., Bian, J., Ren, J. L., Peng, P., Xu, F., & Sun, R. C. (2012). Fractionation and characterization of alkali-extracted hemicelluloses from peashrub. Biomass and Bioenergy, 39, 20–30. https://doi.org/10.1016/j.biombioe.2010.08.034
  34. Peng, F., Ren, J. L., Xu, F., Bian, J., Peng, P., & Sun, R. C. (2009). Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. Journal of Agricultural and Food Chemistry, 57(14), 6305–6317. https://doi.org/10.1021/jf900986b
  35. Peng, H., Wang, N., Hu, Z., Yu, Z., Liu, Y., Zhang, J., & Ruan, R. (2012). Physicochemical characterization of hemicelluloses from bamboo (Phyllostachys pubescens Mazel) stem. Industrial Crops and Products, 37(1), 41–50. https://doi.org/10.1016/j.indcrop.2011.11.031
  36. Raj, N., & Shah, A. (2017). Bioresource Technology Comparative techno-economic analysis of steam explosion , dilute sulfuric acid , ammonia fiber explosion and biological pretreatments of corn stover. Bioresource Technology, 232, 331–343. https://doi.org/10.1016/j.biortech.2017.02.068
  37. Rana, A. K., Sharma, R., & Singha, A. S. (2019). Synthesis and Evaluation of Physicochemical Properties of Grewia Optiva Fiber Graft Copolymers. Polymer Science - Series B, 61(4), 409–420. https://doi.org/10.1134/S1560090419040109
  38. Saha, K., Dasgupta, J., Chakraborty, S., Antunes, F. A. F., Sikder, J., Curcio, S., dos Santos, J. C., Arafat, H. A., & da Silva, S. S. (2017). Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment. Cellulose, 24(8), 3191–3207. https://doi.org/10.1007/s10570-017-1330-x
  39. Sheltami, R. M., Abdullah, I., Ahmad, I., Dufresne, A., & Kargarzadeh, H. (2012). Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers, 88(2), 772–779. https://doi.org/10.1016/j.carbpol.2012.01.062
  40. Silvério, H. A., Flauzino Neto, W. P., Dantas, N. O., & Pasquini, D. (2013). Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Industrial Crops and Products, 44, 427–436. https://doi.org/10.1016/j.indcrop.2012.10.014
  41. Singha, A. S., & Thakur, V. K. (2009). Morphological, thermal, and Physicochemical characterization of surface modified Pinus fibers. International Journal of Polymer Analysis and Characterization, 14(3), 271–289. https://doi.org/10.1080/10236660802666160
  42. Sun, J. X., Sun, X. F., Sun, R. C., & Su, Y. Q. (2004). Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydrate Polymers, 56(2), 195–204. https://doi.org/10.1016/j.carbpol.2004.02.002
  43. Sun, X. F., Jing, Z., Fowler, P., Wu, Y., & Rajaratnam, M. (2011). Structural characterization and isolation of lignin and hemicelluloses from barley straw. Industrial Crops and Products, 33(3), 588–598. https://doi.org/10.1016/j.indcrop.2010.12.005
  44. Sun, X. F., Sun, R., Fowler, P., & Baird, M. S. (2005). Extraction and characterization of original lignin and hemicelluloses from wheat straw. Journal of Agricultural and Food Chemistry, 53(4), 860–870. https://doi.org/10.1021/jf040456q
  45. Thakur, V. K., Singha, A. S., & Thakur, M. K. (2013). Fabrication and physico-chemical properties of high-performance pine needles/green polymer composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 62(4), 226–230. https://doi.org/10.1080/00914037.2011.641694
  46. Uma Maheswari, R., Mavukkandy, M. O., Adhikari, U., Naddeo, V., Sikder, J., & Arafat, H. A. (2020). Synergistic effect of humic acid on alkali pretreatment of sugarcane bagasse for the recovery of lignin with phenomenal properties. Biomass and Bioenergy, 134(February), 105486. https://doi.org/10.1016/j.biombioe.2020.105486
  47. X-F Sun, H Wang, G Zhang, P Fowler, M. R. (2010). Extraction and Characterization of Lignins from Maize Stem and Sugarcane Bagasse. Journal of Applied Polymer Science, 120, 3587–3595. https://doi.org/10.1002/app
  48. Yang, D., Zhong, L. X., Yuan, T. Q., Peng, X. W., & Sun, R. C. (2013). Studies on the structural characterization of lignin, hemicelluloses and cellulose fractionated by ionic liquid followed by alkaline extraction from bamboo. Industrial Crops and Products, 43(1), 141–149. https://doi.org/10.1016/j.indcrop.2012.07.024
  49. Yang, S., Zhang, Y., Yue, W., Wang, W., Wang, Y. Y., Yuan, T. Q., & Sun, R. C. (2016). Valorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept. Biotechnology for Biofuels, 9(1), 1–14. https://doi.org/10.1186/s13068-016-0656-1
  50. Yu, T., Ren, J., Li, S., Yuan, H., & Li, Y. (2010). Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Composites Part A: Applied Science and Manufacturing, 41(4), 499–505. https://doi.org/10.1016/j.compositesa.2009.12.006
  51. Zhang, P., Dong, S. J., Ma, H. H., Zhang, B. X., Wang, Y. F., & Hu, X. M. (2015). Fractionation of corn stover into cellulose, hemicellulose and lignin using a series of ionic liquids. Industrial Crops and Products, 76, 688–696. https://doi.org/10.1016/j.indcrop.2015.07.037
  52. Zhang, X. M., Meng, L. Y., Xu, F., & Sun, R. C. (2011). Pretreatment of partially delignified hybrid poplar for biofuels production: Characterization of organosolv hemicelluloses. Industrial Crops and Products, 33(2), 310–316. https://doi.org/10.1016/j.indcrop.2010.11.016
  53. Zhao, X., Wu, R., & Liu, D. (2011). Production of pulp, ethanol and lignin from sugarcane bagasse by alkali-peracetic acid delignification. Biomass and Bioenergy, 35(7), 2874–2882. https://doi.org/10.1016/j.biombioe.2011.03.033

How to Cite

Sequential extraction of carbohydrates and lignin from agricultural waste and their structural characterization. (2022). Biomaterials and Polymers Horizon, 1(2). https://doi.org/10.37819/bph.001.02.0216

How to Cite

Sequential extraction of carbohydrates and lignin from agricultural waste and their structural characterization. (2022). Biomaterials and Polymers Horizon, 1(2). https://doi.org/10.37819/bph.001.02.0216

HTML
586

Total
324

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2022 A. Mtibe, M.J. John, J.E. Andrew, T.C. Mokhena

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.