Skip to main content Skip to main navigation menu Skip to site footer

Futuristic role of nanoparticles for treatment of COVID-19

  • Naveen Thakur
  • Nikesh Thakur
  • Pankaj Chauhan
  • Kuldeep Kumar
  • Kamal Jeet
  • Ashwani Kumar
  • Davinder Pal Sharma

Abstract

COVID-19 is a brand new contagious sickness caused by a brand new coronavirus referred to as intense acute breathing syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is a disease that has reached each continent inside the global; it has overloaded the medical system international and it has been declared a plague by using the arena health agency. presently there are not any set up or tested treatments for COVID-19, that is permitted worldwide. Nanoparticles are described as stable colloidal particles ranging in size from 10 to 1000 nm. Nanoparticles provide many advantages to larger particles including multiplied surface-to-volume ratio and improved magnetic properties. Over the last few years, there was a regularly developing interest in the usage of nanoparticles in distinct biomedical packages inclusive of focused drug transport, hyperthermia, photoablation therapy, bioimaging and biosensors. in this review we've got hypothesize the class and synthesis of nanoparticles with diverse remedies along with photobiomodulation, drug shipping gadget, electrochemical nanotechnology biosensors, hydrothermotherapy and photocatalytic pastime which can be used for remedy and prevention of COVID-19 to lower the severity of moderate and slight instances of Coronavirus. We address current in addition to emerging therapies and prophylactic techniques that may allow us to efficaciously fight this pandemic and additionally can also assist to discover the key areas where nano-scientists can step in.

Section

References

  1. Achak, M., Bakri, S. A., Chhiti, Y., Alaoui, F. E. M. H., Barka, N., & Boumya, W. (2021). SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: A review on detection, survival and disinfection technologies. Science of the Total Environment, 761, 143192.
  2. Agarwal, H., Kumar, S. V., & Rajeshkumar, S. (2017). A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach. Resource-Efficient Technologies, 3(4), 406-413.
  3. Alexandridis, P. (2011). Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers. Chemical Engineering & Technology, 34(1), 15-28.
  4. Alias, N. H., Jaafar, J., Samitsu, S., Ismail, A. F., Mohamed, M. A., Othman, M. H. D., ... & Aziz, F. (2020). Mechanistic insight of the formation of visible-light responsive nanosheet graphitic carbon nitride embedded polyacrylonitrile nanofibres for wastewater treatment. Journal of Water Process Engineering, 33, 101015.
  5. Anastas, P., & Eghbali, N. (2010). Green chemistry: principles and practice. Chemical Society Reviews, 39(1), 301-312.
  6. Anu, Thakur, N., Kumar, K., & Sharma, K. K. (2020). Application of Co-doped copper oxide nanoparticles against different multidrug resistance bacteria. Inorganic and Nano-Metal Chemistry, 50(10), 933-943.
  7. Ari, A. (2020). Practical strategies for a safe and effective delivery of aerosolized medications to patients with COVID-19. Respiratory Medicine, 167, 105987.
  8. Astuti, I. (2020). Diabetes Metab. Syndr. Clin. Res. Rev, 14(4), 407-412.
  9. Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D. Y., Chen, L., & Wang, M. (2020). Presumed asymptomatic carrier transmission of COVID-19. Jama, 323(14), 1406-1407.
  10. Balkrishna, A., Arya, V., Rohela, A., Kumar, A., Verma, R., Kumar, D., ... & Kumar, P. (2021). Nanotechnology Interventions in the Management of COVID-19: Prevention, Diagnosis and Virus-Like Particle Vaccines. Vaccines, 9(10), 1129.
  11. Banerjee, I., Douaisi, M. P., Mondal, D., & Kane, R. S. (2012). Light-activated nanotube–porphyrin conjugates as effective antiviral agents. Nanotechnology, 23(10), 105101.
  12. Banet, M. A. N. U. E. L. (1986). Fever in mammals: is it beneficial?. The Yale journal of biology and medicine, 59(2), 117.
  13. Bang, J. H., & Suslick, K. S. (2010). Applications of ultrasound to the synthesis of nanostructured materials. Advanced materials, 22(10), 1039-1059.
  14. Barras, A., Pagneux, Q., Sane, F., Wang, Q., Boukherroub, R., Hober, D., & Szunerits, S. (2016). High efficiency of functional carbon nanodots as entry inhibitors of herpes simplex virus type 1. ACS applied materials & interfaces, 8(14), 9004-9013.
  15. Bin, M., Bin, L., Yunfu, W., Gongnong, L., Yuzhe, S., Liping, M., & Guohan, L. (2009). Preparation of Au colloid of small size in aqueous solution. Rare Metal Materials and Engineering, 3.
  16. Block, P., Hoffman, M., Raabe, I. J., Dowd, J. B., Rahal, C., Kashyap, R., & Mills, M. C. (2020). Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. Nature Human Behaviour, 4(6), 588-596.
  17. Byrne, J. A., Dunlop, P. S. M., Hamilton, J. W. J., Fernández-Ibáñez, P., Polo-López, I., Sharma, P. K., & Vennard, A. S. M. (2015). A review of heterogeneous photocatalysis for water and surface disinfection. Molecules, 20(4), 5574-5615.
  18. Cai, W., & Chen, X. (2007). Nanoplatforms for targeted molecular imaging in living subjects. Small, 3(11), 1840-1854.
  19. Calthrop, L. C. (2013). Hydrotherapy and physiotherapy: For bath attendants, nurses and biophysical assistants. Butterworth-Heinemann.
  20. Cannon, B., Houstek, J., & Nedergaard, JAN (1998). Brown adipose tissue: More than an effector of thermogenesis? a. Annals of the New York Academy of Sciences , 856 (1), 171-187.
  21. Carvalho, J. L., Britto, A., de Oliveira, A. L., Castro-Faria-Neto, H., Albertini, R., Anatriello, E., & Aimbire, F. (2017). Beneficial effect of low-level laser therapy in acute lung injury after iI/R is dependent on the secretion of IL-10 and independent of the TLR/MyD88 signaling. Lasers in medical science, 32(2), 305-315.
  22. Chan, J. F. W., Kok, K. H., Zhu, Z., Chu, H., To, K. K. W., Yuan, S., & Yuen, K. Y. (2020a). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging microbes & infections, 9(1), 221-236.
  23. Chan, J. F. W., Yuan, S., Kok, K. H., To, K. K. W., Chu, H., Yang, J., ... & Yuen, K. Y. (2020b). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The lancet, 395(10223), 514-523.
  24. Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., ... & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The lancet, 395(10223), 507-513.
  25. Chen, Y. N., Hsueh, Y. H., Hsieh, C. T., Tzou, D. Y., & Chang, P. L. (2016). Antiviral activity of graphene–silver nanocomposites against non-enveloped and enveloped viruses. International journal of environmental research and public health, 13(4), 430.
  26. Chi, L., Qian, Y., Guo, J., Wang, X., Arandiyan, H., & Jiang, Z. (2019). Novel g-C3N4/TiO2/PAA/PTFE ultrafiltration membrane enabling enhanced antifouling and exceptional visible-light photocatalytic self-cleaning. Catalysis Today, 335, 527-537.
  27. Cho, M., Cates, E. L., & Kim, J. H. (2011). Inactivation and surface interactions of MS-2 bacteriophage in a TiO2 photoelectrocatalytic reactor. Water research, 45(5), 2104-2110.
  28. Cho, M., Chung, H., Choi, W., & Yoon, J. (2005). Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Applied and environmental microbiology, 71(1), 270-275.
  29. Conti, C., De Marco, A., Mastromarino, P., Tomao, P., & Santoro, M. G. (1999). Antiviral effect of hyperthermic treatment in rhinovirus infection. Antimicrobial agents and chemotherapy, 43(4), 822-829.
  30. Costa Carvalho, J. L., De Brito, A. A., De Oliveira, A. P. L., de Castro Faria Neto, H. C., Pereira, T. M., De Carvalho, R. A., ... & Aimbire, F. (2016). The chemokines secretion and the oxidative stress are targets of low‐level laser therapy in allergic lung inflammation. Journal of Biophotonics, 9(11-12), 1208-1221.
  31. Cury, V., de Lima, T. M., Prado, C. M., Pinheiro, N., Ariga, S. K., Barbeiro, D. F., ... & Souza, H. P. (2016). Low level laser therapy reduces acute lung inflammation without impairing lung function. Journal of biophotonics, 9(11-12), 1199-1207.
  32. Da Cunha, M. G., Vitoretti, L. B., de Brito, A. A., Alves, C. E., de Oliveira, N. C. R., dos Santos Dias, A., ... & Ligeiro-de-Oliveira, A. P. (2018). Low-level laser therapy reduces lung inflammation in an experimental model of chronic obstructive pulmonary disease involving P2X7 receptor. Oxidative medicine and cellular longevity, 2018.
  33. Dai, W., Zhang, B., Jiang, X. M., Su, H., Li, J., Zhao, Y., ... & Liu, H. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 368(6497), 1331-1335.
  34. Das, R. K., Pachapur, V. L., Lonappan, L., Naghdi, M., Pulicharla, R., Maiti, S., ... & Brar, S. K. (2017). Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnology for Environmental Engineering, 2(1), 1-21.
  35. De Brito, A. A., da Silveira, E. C., Rigonato-Oliveira, N. C., Soares, S. S., Brandao-Rangel, M. A. R., Soares, C. R., ... & de Oliveira, A. P. (2020). Low-level laser therapy attenuates lung inflammation and airway remodeling in a murine model of idiopathic pulmonary fibrosis: relevance to cytokines secretion from lung structural cells. Journal of Photochemistry and Photobiology B: Biology, 203, 111731.
  36. De Lima, F. M., Moreira, L. M., Villaverde, A. B., Albertini, R., Castro-Faria-Neto, H. C., & Aimbire, F. (2011). Low-level laser therapy (LLLT) acts as cAMP-elevating agent in acute respiratory distress syndrome. Lasers in medical science, 26(3), 389-400.
  37. De Lima, F. M., Vitoretti, L., Coelho, F., Albertini, R., Breithaupt-Faloppa, A. C., de Lima, W. T., & Aimbire, F. (2013). Suppressive effect of low-level laser therapy on tracheal hyperresponsiveness and lung inflammation in rat subjected to intestinal ischemia and reperfusion. Lasers in medical science, 28(2), 551-564.
  38. Decaro, N., Mari, V., Elia, G., Addie, D. D., Camero, M., Lucente, M. S., ... & Buonavoglia, C. (2010). Recombinant canine coronaviruses in dogs, Europe. Emerging infectious diseases, 16(1), 41.
  39. Del Rio, C., & Malani, P. N. (2020). COVID-19-new insights on a rapidly changing epidemic. Jama, 323(14), 1339-1340.
  40. Dhama, K., Pawaiya, R. V. S., Chakraborty, S., Tiwari, R., Saminathan, M., & Verma, A. K. (2014). Coronavirus infection in equines: a review. Asian Journal of Animal and Veterinary Advances, 9(3), 164-176.
  41. Dhandapani, P., Maruthamuthu, S., & Rajagopal, G. (2012). Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm. Journal of Photochemistry and Photobiology B: Biology, 110, 43-49.
  42. Dinarello, C. A., Conti, P., & Mier, J. W. (1986). Effects of human interleukin-1 on natural killer cell activity: is fever a host defense mechanism for tumor killing?. The Yale journal of biology and medicine, 59(2), 97.
  43. Ditta, I. B., Steele, A., Liptrot, C., Tobin, J., Tyler, H., Yates, H. M., ... & Foster, H. A. (2008). Photocatalytic antimicrobial activity of thin surface films of TiO 2, CuO and TiO 2/CuO dual layers on Escherichia coli and bacteriophage T4. Applied microbiology and biotechnology, 79(1), 127-133.
  44. Downing, J. F., & Taylor, M. W. (1987a). The effect of in vivo hyperthermia on selected lymphokines in man. Lymphokine research, 6(2), 103-109.
  45. Downing, J. F., Taylor, M. W., Wei, K. M., & Elizondo, R. S. (1987b). In vivo hyperthermia enhances plasma antiviral activity and stimulates peripheral lymphocytes for increased synthesis of interferon-γ. Journal of interferon research, 7(2), 185-193.
  46. Draz, M. S., & Shafiee, H. (2018). Applications of gold nanoparticles in virus detection. Theranostics, 8(7), 1985.
  47. Dynlacht, J. R., & Fox, M. H. (1992). The effect of 45 C hyperthermia on the membrane fluidity of cells of several lines. Radiation research, 130(1), 55-60.
  48. Dziąbowska, K., Czaczyk, E., & Nidzworski, D. (2018). Detection methods of human and animal influenza virus—current trends. Biosensors, 8(4), 94.
  49. Ernst, E., Pecho, E., Wirz, P., & Saradeth, T. (1990). Regular sauna bathing and the incidence of common colds. Annals of medicine, 22(4), 225-227.
  50. Gahlawat, G., & Choudhury, A. R. (2019). A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC advances, 9(23), 12944-12967.
  51. Gandhi, K. K., Pavaskar, R., Cappetta, E. G., & Drew, H. J. (2019). Effectiveness of adjunctive use of low-level laser therapy and photodynamic therapy after scaling and root planing in patients with chronic periodontitis. Int J Periodontics Restorative Dent, 39(6), 837-843.
  52. Giannakis, S., Liu, S., Carratalà, A., Rtimi, S., Amiri, M. T., Bensimon, M., & Pulgarin, C. (2017). Iron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size. Journal of hazardous materials, 339, 223-231.
  53. Grabowska, I., Malecka, K., Jarocka, U., Radecki, J., & Radecka, H. (2014). Electrochemical biosensors for detection of avian influenza virus--current status and future trends. Acta Biochimica Polonica, 61(3).
  54. Habibi-Yangjeh, A., Asadzadeh-Khaneghah, S., Feizpoor, S., & Rouhi, A. (2020). Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: Can we win against pathogenic viruses? Journal of Colloid and Interface Science.
  55. Hannuksela, M., & Väänänen, A. (1988). The sauna, skin and skin diseases. Annals of clinical research, 20(4), 276-278.
  56. Hanson, D. F., Murphy, P. A., Silicano, R., & Shin, H. S. (1983). The effect of temperature on the activation of thymocytes by interleukins I and II. The Journal of Immunology, 130(1), 216-221.
  57. Hassan, S. A., Sheikh, F. N., Jamal, S., Ezeh, J. K., & Akhtar, A. (2020). Coronavirus (COVID-19): a review of clinical features, diagnosis, and treatment. Cureus, 12(3).
  58. Helmy, Y. A., Fawzy, M., Elaswad, A., Sobieh, A., Kenney, S. P., & Shehata, A. A. (2020). The COVID-19 pandemic: a comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. Journal of clinical medicine, 9(4), 1225.
  59. Herlekar, M., Barve, S., & Kumar, R. (2014). Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticles, 2014.
  60. Hu, X., Hu, C., Peng, T., Zhou, X., & Qu, J. (2010). Plasmon-induced inactivation of enteric pathogenic microorganisms with Ag− AgI/Al2O3 under visible-light irradiation. Environmental science & technology, 44(18), 7058-7062.
  61. Hua, J., Wang, G., Huang, M., Hua, S., & Yang, S. (2020). A visual approach for the SARS (severe acute respiratory syndrome) outbreak data analysis. International Journal of Environmental Research and Public Health, 17(11), 3973.
  62. Huang, H., Fan, C., Li, M., Nie, H. L., Wang, F. B., Wang, H., ... & Huang, J. (2020). COVID-19: a call for physical scientists and engineers. ACS nano, 14(4), 3747-3754.
  63. Itani, R., Tobaiqy, M., & Al Faraj, A. (2020). Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients. Theranostics, 10(13), 5932.
  64. Jackman, J. A., Lee, J., & Cho, N. J. (2016). Nanomedicine for infectious disease applications: innovation towards broad‐spectrum treatment of viral infections. Small, 12(9), 1133-1139.
  65. Jana, N. R., Gearheart, L., & Murphy, C. J. (2001). Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chemistry of materials, 13(7), 2313-2322.
  66. Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein journal of nanotechnology, 9(1), 1050-1074.
  67. Ji, X., Song, X., Li, J., Bai, Y., Yang, W., & Peng, X. (2007). Size control of gold nanocrystals in citrate reduction: the third role of citrate. Journal of the American Chemical Society, 129(45), 13939-13948.
  68. Jiang, S., & Hillyer, C. (2020). Du LJTii. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses, 41, 355-359.
  69. Jin, Y. H., Cai, L., Cheng, Z. S., Cheng, H., Deng, T., Fan, Y. P., ... & Wang, X. H. (2020). A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Medical Research, 7(1), 1-23.
  70. Kabir, M., Afzal, M. S., Khan, A., & Ahmed, H. (2020). COVID-19 pandemic and economic cost; impact on forcibly displaced people. Travel medicine and infectious disease, 35, 101661.
  71. Khan, A. K., Rashid, R., Murtaza, G., & Zahra, A. J. T. R. (2014). Gold nanoparticles: synthesis and applications in drug delivery. Tropical journal of pharmaceutical research, 13(7), 1169-1177.
  72. Khan, S., Liu, J., & Xue, M. (2020). Transmission of SARS-CoV-2, required developments in research and associated public health concerns. Frontiers in Medicine, 7, 310.
  73. Kim, H. G., Hwang, D. W., Bae, S. W., Jung, J. H., & Lee, J. S. (2003). Photocatalytic water splitting over La 2 Ti 2 O 7 synthesized by the polymerizable complex method. Catalysis letters, 91(3), 193-198.
  74. Krejcova, L., Hynek, D., Adam, V., Hubalek, J., & Kizek, R. (2012). Electrochemical sensors and biosensors for influenza detection. Int J Electrochem Sci, 7(11), 10779-10801.
  75. Krejcova, L., Michalek, P., Rodrigo, M. M., Heger, Z., Krizkova, S., Vaculovicova, M., ... & Kizek, R. (2015). Nanoscale virus biosensors: state of the art. Nanobiosensors in Disease Diagnosis, 4, 47-66.
  76. Kumar, N., Hu, Y., Singh, S., & Mizaikoff, B. (2018). Emerging biosensor platforms for the assessment of water-borne pathogens. Analyst, 143(2), 359-373.
  77. Kunutsor, S. K., Laukkanen, T., & Laukkanen, J. A. (2017). Sauna bathing reduces the risk of respiratory diseases: a long-term prospective cohort study. European journal of epidemiology, 32(12), 1107-1111.
  78. Kunutsor, S. K., Laukkanen, T., & Laukkanen, J. A. (2018). Longitudinal associations of sauna bathing with inflammation and oxidative stress: the KIHD prospective cohort study. Annals of medicine, 50(5), 437-442.
  79. Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International journal of antimicrobial agents, 55(3), 105924.
  80. Lamarre, A., & Talbot, P. J. (1989). Effect of pH and temperature on the infectivity of human coronavirus 229E. Canadian journal of microbiology, 35(10), 972-974.
  81. Laukkanen, J. A., & Laukkanen, T. (2018a). Sauna bathing and systemic inflammation. European journal of epidemiology, 33(3), 351-353.
  82. Laukkanen, T., Kunutsor, S. K., Zaccardi, F., Lee, E., Willeit, P., Khan, H., & Laukkanen, J. A. (2018b). Acute effects of sauna bathing on cardiovascular function. Journal of human hypertension, 32(2), 129-138.
  83. Lavaee, F., & Shadmanpour, M. (2019). Comparison of the effect of photodynamic therapy and topical corticosteroid on oral lichen planus lesions. Oral diseases, 25(8), 1954-1963.
  84. Lee, J., Zoh, K., & Ko, G. (2008). Inactivation and UV disinfection of murine norovirus with TiO2 under various environmental conditions. Applied and environmental microbiology, 74(7), 2111-2117.
  85. Lee, S., Nakamura, M., & Ohgaki, S. (1998). Inactivation of phage Qß by 254nm UV light and titanium dioxide photocatalyst. Journal of Environmental Science & Health Part A, 33(8), 1643-1655.
  86. Li, H., Liu, S. M., Yu, X. H., Tang, S. L., & Tang, C. K. (2020a). Coronavirus disease 2019 (COVID-19): current status and future perspectives. International journal of antimicrobial agents, 55(5), 105951.
  87. Li, H., Zhou, Y., Zhang, M., Wang, H., Zhao, Q., & Liu, J. (2020b). Updated approaches against SARS-CoV-2. Antimicrobial agents and chemotherapy, 64(6), e00483-20.
  88. Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., ... & Feng, Z. (2020c). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England journal of medicine.
  89. Li, Q., Page, M. A., Mariñas, B. J., & Shang, J. K. (2008). Treatment of coliphage MS2 with palladium-modified nitrogen-doped titanium oxide photocatalyst illuminated by visible light. Environmental science & technology, 42(16), 6148-6153.
  90. Li, Z., Fu, Y., Liao, M., & Li, Y. (2017). Biosensing methods for the detection of highly pathogenic avian influenza H5N1 and H7N9 viruses. Analytical Methods, 9(36), 5238-5248.
  91. Liu, Y., Gayle, A. A., Wilder-Smith, A., & Rocklöv, J. (2020). The reproductive number of COVID-19 is higher compared to SARS coronavirus. Journal of travel medicine.
  92. Łoczechin, A., Séron, K., Barras, A., Giovanelli, E., Belouzard, S., Chen, Y. T., ... & Szunerits, S. (2019). Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS applied materials & interfaces, 11(46), 42964-42974.
  93. Lou, Z., Zhang, C., Gong, T., Xue, C., Scholp, A., & Jiang, J. J. (2019). Wound-healing effects of 635-nm low-level laser therapy on primary human vocal fold epithelial cells: an in vitro study. Lasers in medical science, 34(3), 547-554.
  94. Lovato, A., & De Filippis, C. (2020). Clinical presentation of COVID-19: a systematic review focusing on upper airway symptoms. Ear, Nose & Throat Journal, 99(9), 569-576.
  95. Mainardes, R. M., & Diedrich, C. (2020). The potential role of nanomedicine on COVID-19 therapeutics. Therapeutic Delivery, 11(7), 411-414.
  96. Majeric, P., & Rudolf, R. (2020). Advances in Ultrasonic Spray Pyrolysis Processing of Noble Metal Nanoparticles. Materials, 13(16), 3485.
  97. Majeric, P., Jenko, D., Budič, B., Tomić, S., Čolić, M., Friedrich, B., & Rudolf, R. (2015). Formation of non-toxic Au nanoparticles with bimodal size distribution by a modular redesign of ultrasonic spray pyrolysis. Nanoscience and Nanotechnology Letters, 7(11), 920-929.
  98. Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., & Kalinina, N. O. (2014). “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 6, 1-20.
  99. Medema, G., Heijnen, L., Elsinga, G., Italiaander, R., & Brouwer, A. (2020). Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environmental Science & Technology Letters, 7(7), 511-516.
  100. Mehani, S. H. M. (2017). Immunomodulatory effects of two different physical therapy modalities in patients with chronic obstructive pulmonary disease. Journal of physical therapy science, 29(9), 1527-1533.
  101. Minati, L., Benetti, F., Chiappini, A., & Speranza, G. (2014). One-step synthesis of star-shaped gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 441, 623-628.
  102. Mirzaei, H., & Darroudi, M. (2017). Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceramics International, 43(1), 907-914.
  103. Mitra, M., & Nandi, D. K. (2020). Herbal gold nanoparticles for attenuating pandemic infection of COVID-19 virus. BLDE University Journal of Health Sciences, 5(3), 30.
  104. Mohammadi, P., Fakhri, S., Asgary, S., Farzaei, M. H., & Echeverria, J. (2019). The signaling pathways, and therapeutic targets of antiviral agents: focusing on the antiviral approaches and clinical perspectives of anthocyanins in the management of viral diseases. Frontiers in pharmacology, 10, 1207.
  105. Mokhtarzadeh, A., Eivazzadeh-Keihan, R., Pashazadeh, P., Hejazi, M., Gharaatifar, N., Hasanzadeh, M., ... & de la Guardia, M. (2017). Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Trends in Analytical Chemistry, 97, 445-457.
  106. Montalcini, T., De Bonis, D., Ferro, Y., Carè, I., Mazza, E., Accattato, F., ... & Pujia, A. (2015). High vegetable fats intake is associated with high resting energy expenditure in vegetarians. Nutrients, 7(7), 5933-5947.
  107. Moor, K. J., & Kim, J. H. (2014). Simple synthetic method toward solid supported C60 visible light-activated photocatalysts. Environmental science & technology, 48(5), 2785-2791.
  108. Moor, K. J., Valle, D. C., Li, C., & Kim, J. H. (2015). Improving the visible light photoactivity of supported fullerene photocatalysts through the use of [C70] fullerene. Environmental science & technology, 49(10), 6190-6197.
  109. Mussttaf, R. A., Jenkins, D. F., & Jha, A. N. (2019). Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. International journal of radiation biology, 95(2), 120-143.
  110. Nadaroglu, H., GÜNGÖR, A. A., & Selvi, İ. N. C. E. (2017). Synthesis of nanoparticles by green synthesis method. International Journal of Innovative Research and Reviews, 1(1), 6-9.
  111. Nadaroglu, H., GÜNGÖR, A. A., & Selvi, İ. N. C. E. (2017). Synthesis of nanoparticles by green synthesis method. International Journal of Innovative Research and Reviews, 1(1), 6-9.
  112. Nasir, A. M., Jaafar, J., Aziz, F., Yusof, N., Salleh, W. N. W., Ismail, A. F., & Aziz, M. (2020). A review on floating nanocomposite photocatalyst: fabrication and applications for wastewater treatment. Journal of Water Process Engineering, 36, 101300.
  113. Neville, A. J., & Sauder, D. N. (1988). Whole body hyperthermia (41-42 degrees C) induces interleukin-1 in vivo. Lymphokine research, 7(3), 201-206.
  114. Oliveira Jr, M. C., Greiffo, F. R., Rigonato-Oliveira, N. C., Custódio, R. W. A., Silva, V. R., Damaceno-Rodrigues, N. R., ... & Vieira, R. P. (2014). Low level laser therapy reduces acute lung inflammation in a model of pulmonary and extrapulmonary LPS-induced ARDS. Journal of Photochemistry and Photobiology B: Biology, 134, 57-63.
  115. Ortiz-Prado, E., Simbaña-Rivera, K., Gómez-Barreno, L., Rubio-Neira, M., Guaman, L. P., Kyriakidis, N. C., ... & López-Cortés, A. (2020). Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review. Diagnostic microbiology and infectious disease, 98(1), 115094.
  116. Owens, S. D., & Gasper, P. W. (1995). Hyperthermic therapy for HIV infection. Medical hypotheses, 44(4), 235-242.
  117. Pan, Y., Liu, X., Zhang, W., Liu, Z., Zeng, G., Shao, B., ... & Chen, M. (2020). Advances in photocatalysis based on fullerene C60 and its derivatives: Properties, mechanism, synthesis, and applications. Applied Catalysis B: Environmental, 265, 118579.
  118. Pandey, S. K., & Kim, K. H. (2009). A review of methods for the determination of reduced sulfur compounds (RSCs) in air. Environmental science & technology, 43(9), 3020-3029.
  119. Parida, U. K., Bindhani, B. K., & Nayak, P. (2011). Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. World J Nano Sci Eng, 1(04), 93.
  120. Park, S., Park, H. H., Kim, S. Y., Kim, S. J., Woo, K., & Ko, G. (2014). Antiviral properties of silver nanoparticles on a magnetic hybrid colloid. Applied and environmental microbiology, 80(8), 2343-2350.
  121. Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., del Pilar Rodriguez-Torres, M., Acosta-Torres, L. S., ... & Shin, H. S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology, 16(1), 1-33.
  122. Pedersen, B. K., & Febbraio, M. A. (2008). Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiological reviews, 88(4), 1379-1406.
  123. Pelaz, B., Alexiou, C., Alvarez-Puebla, R. A., Alves, F., Andrews, A. M., Ashraf, S., ... & Parak, W. J. (2017). Diverse applications of nanomedicine. ACS nano, 11(3), 2313-2381.
  124. Peña-Bahamonde, J., Nguyen, H. N., Fanourakis, S. K., & Rodrigues, D. F. (2018). Recent advances in graphene-based biosensor technology with applications in life sciences. Journal of nanobiotechnology, 16(1), 1-17.
  125. Perkins, N. D. (2007). Integrating cell-signalling pathways with NF-κB and IKK function. Nature reviews Molecular cell biology, 8(1), 49-62.
  126. Pilch, W., Pokora, I., Szyguła, Z., Pałka, T., Pilch, P., Cisoń, T., ... & Wiecha, S. (2013). Effect of a single finnish sauna session on white blood cell profile and cortisol levels in athletes and non-athletes. Journal of human kinetics, 39, 127.
  127. Podstawski, R., Borysławski, K., Clark, C. C., Laukkanen, J. A., & Gronek, P. (2020). The Effect of 16-Minute Thermal Stress and 2-Minute Cold Water Immersion on the Physiological Parameters of Young Sedentary Men. Montenegrin Journal of Sports Science and Medicine, 9(1).
  128. Polte, J., Ahner, T. T., Delissen, F., Sokolov, S., Emmerling, F., Thünemann, A. F., & Kraehnert, R. (2010a). Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. Journal of the American Chemical Society, 132(4), 1296-1301.
  129. Polte, J., Erler, R., Thünemann, A. F., Emmerling, F., & Kraehnert, R. (2010b). SAXS in combination with a free liquid jet for improved time-resolved in situ studies of the nucleation and growth of nanoparticles. Chemical communications, 46(48), 9209-9211.
  130. Polte, J., Erler, R., Thunemann, A. F., Sokolov, S., Ahner, T. T., Rademann, K., ... & Kraehnert, R. (2010c). Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. ACS nano, 4(2), 1076-1082.
  131. Polte, J., Tuaev, X., Wuithschick, M., Fischer, A., Thuenemann, A. F., Rademann, K., ... & Emmerling, F. (2012). Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles. Acs Nano, 6(7), 5791-5802.
  132. Prasher, P., Sharma, M., Mehta, M., Paudel, K. R., Satija, S., Chellappan, D. K., ... & Dua, K. (2020). Plants derived therapeutic strategies targeting chronic respiratory diseases: Chemical and immunological perspective. Chemico-biological interactions, 325, 109125.
  133. Rabenau, H. F., Cinatl, J., Morgenstern, B., Bauer, G., Preiser, W., & Doerr, H. W. (2005). Stability and inactivation of SARS coronavirus. Medical microbiology and immunology, 194(1), 1-6.
  134. Raison, C. (2017). 419. Inflammation in treatment resistant depression: challenges and opportunities. Biological Psychiatry, 81(10), S171.
  135. Raison, C. L., Knight, J. M., & Pariante, C. (2018). Interleukin (IL)-6: a good kid hanging out with bad friends (and why sauna is good for health). Brain, behavior, and immunity, 73, 1-2.
  136. Rajakumar, G., Gomathi, T., Thiruvengadam, M., Rajeswari, V. D., Kalpana, V. N., & Chung, I. M. (2017). Evaluation of anti-cholinesterase, antibacterial and cytotoxic activities of green synthesized silver nanoparticles using from Millettia pinnata flower extract. Microbial pathogenesis, 103, 123-128.
  137. Razzolini, M. T. P., Barbosa, M. R. F., de Araújo, R. S., de Oliveira, I. F., Mendes-Correa, M. C., Sabino, E. C., ... & Levin, A. S. (2021). SARS-CoV-2 in a stream running through an underprivileged, underserved, urban settlement in São Paulo, Brazil: A 7-month follow-up. Environmental Pollution, 290, 118003.
  138. Regmi, C., Joshi, B., Ray, S. K., Gyawali, G., & Pandey, R. P. (2018). Understanding mechanism of photocatalytic microbial decontamination of environmental wastewater. Frontiers in chemistry, 6, 33.
  139. Revuelta, J. L., Chamorro-de-Vega, E., Rodríguez-González, C. G., Alonso, R., Herranz-Alonso, A., & Sanjurjo-Sáez, M. (2018). Effectiveness, safety, and costs of a treatment switch to dolutegravir plus rilpivirine dual therapy in treatment-experienced HIV patients. Annals of Pharmacotherapy, 52(1), 11-18.
  140. Robins, H. I., Sielaff, K. M., Storer, B., Hawkins, M. J., & Borden, E. C. (1989). Phase I trial of human lymphoblastoid interferon with whole body hyperthermia in advanced cancer. Cancer research, 49(6), 1609-1615.
  141. Rupp, R., Rosenthal, S.L. and Stanberry, L.R., 2007. VivaGel(SPL7013 Gel): A candidate dendrimer–microbicide for the prevention of HIV and HSV infection. International journal of nanomedicine, 2(4), p.561.
  142. Salam, H. A., Sivaraj, R., & Venckatesh, R. (2014). Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Materials letters, 131, 16-18.
  143. Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: current knowledge. Virology journal, 16(1), 1-22.
  144. Sengupta, J., & Hussain, C. M. (2021). Carbon nanomaterials to combat virus: A perspective in view of COVID-19. Carbon Trends, 2, 100019.
  145. Shang, Y., Min, C., Hu, J., Wang, T., Liu, H., & Hu, Y. (2013). Synthesis of gold nanoparticles by reduction of HAuCl4 under UV irradiation. Solid state sciences, 15, 17-23.
  146. Sharma, S., & Kumar, K. (2021a). Aloe-vera leaf extract as a green agent for the synthesis of CuO nanoparticles inactivating bacterial pathogens and dye. Journal of Dispersion Science and Technology, 42(13), 1950-1962.
  147. Sharma, S., Kumar, K., & Thakur, N. (2021b). Green synthesis of silver nanoparticles and evaluation of their anti-bacterial activities: use of Aloe barbadensis miller and Ocimum tenuiflorum leaf extracts. Nanofabrication, 6(1), 52-67.
  148. Sharma, S., Kumar, K., Thakur, N., & Chauhan, M. S. (2020b). Ocimum tenuiflorum leaf extract as a green mediator for the synthesis of ZnO nanocapsules inactivating bacterial pathogens. Chemical Papers, 74(10), 3431-3444.
  149. Sharma, S., Kumar, K., Thakur, N., Chauhan, S., & Chauhan, M. S. (2020a). The effect of shape and size of ZnO nanoparticles on their antimicrobial and photocatalytic activities: a green approach. Bulletin of Materials Science, 43(1), 1-10.
  150. Sharma, S., Kumar, K., Thakur, N., Chauhan, S., & Chauhan, M. S. (2021c). Eco-friendly Ocimum tenuiflorum green route synthesis of CuO nanoparticles: Characterizations on photocatalytic and antibacterial activities. Journal of Environmental Chemical Engineering, 9(4), 105395.
  151. Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. Journal of advanced research, 24, 91-98.
  152. Shi, Y., Wang, Y., Shao, C., Huang, J., Gan, J., Huang, X., ... & Melino, G. (2020). COVID-19 infection: the perspectives on immune responses. Cell Death & Differentiation, 27(5), 1451-1454.
  153. Shimizu, K. (2020). 2019-nCoV, fake news, and racism. The lancet, 395(10225), 685-686.
  154. Singh, L., Kruger, H. G., Maguire, G. E., Govender, T., & Parboosing, R. (2017). The role of nanotechnology in the treatment of viral infections. Therapeutic advances in infectious disease, 4(4), 105-131.
  155. Singh, L., Kruger, H. G., Maguire, G. E., Govender, T., & Parboosing, R. (2017a). The role of nanotechnology in the treatment of viral infections. Therapeutic advances in infectious disease, 4(4), 105-131.
  156. Singh, T., Shukla, S., Kumar, P., Wahla, V., Bajpai, V. K., & Rather, I. A. (2017b). Application of nanotechnology in food science: perception and overview. Frontiers in microbiology, 8, 1501.
  157. Singh, Y., Gupta, G., Satija, S., Negi, P., Chellappan, D. K., & Dua, K. (2020). RAAS blockers in hypertension posing a higher risk towards the COVID‐19. Dermatologic therapy.
  158. Sohar, E., Shoenfeld, Y., Shapiro, Y., Ohry, A., & Cabili, S. (1976). Effects of exposure to Finnish sauna. Israel journal of medical sciences, 12(11), 1275-1282.
  159. Sturman, L. S., & Holmes, K. V. (1983). The molecular biology of coronaviruses. Advances in virus research, 28, 35-112.
  160. Swierczewska, M., Crist, R. M., & McNeil, S. E. (2018). Evaluating nanomedicines: obstacles and advancements. In Characterization of Nanoparticles Intended for Drug Delivery (pp. 3-16). Humana Press, New York, NY.
  161. Swierczewska, M., Lee, S., & Chen, X. (2011). The design and application of fluorophore–gold nanoparticle activatable probes. Physical Chemistry Chemical Physics, 13(21), 9929-9941.
  162. Szunerits, S., Barras, A., Khanal, M., Pagneux, Q., & Boukherroub, R. (2015). Nanostructures for the inhibition of viral infections. Molecules, 20(8), 14051-14081.
  163. Tarn, D., Ashley, C. E., Xue, M. I. N., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Accounts of chemical research, 46(3), 792-801.
  164. Thakur, N., & Kumar, K. (2020). Effect of (Ag, Co) co-doping on the structural and antibacterial efficiency of CuO nanoparticles: A rapid microwave assisted method. Journal of Environmental Chemical Engineering, 8(4), 104011.
  165. Thakur, N., Kumar, K., & Kumar, A. (2021a). Effect of (Ag, Zn) co-doping on structural, optical and bactericidal properties of CuO nanoparticles synthesized by a microwave-assisted method. Dalton Transactions, 50(18), 6188-6203.
  166. Thakur, N., Thakur, N., Bhullar, V., Sharma, S., Mahajan, A., Kumar, K., ... & Pathak, D. (2021b). TiO2 nanofibers fabricated by electrospinning technique and degradation of MO dye under UV light. Zeitschrift für Kristallographie-Crystalline Materials, 236(8-10), 239-250.
  167. Theobald, N. (2020). Emerging vaccine delivery systems for COVID-19: Functionalised silica nanoparticles offer a potentially safe and effective alternative delivery system for DNA/RNA vaccines and may be useful in the hunt for a COVID-19 vaccine. Drug Discovery Today, 25(9), 1556.
  168. Thirumalai, A. V., Prabhu, D., & Soniya, M. (2010). Stable silver nanoparticle synthesizing methods and its applications. J. Bio. Sci. Res, 1, 259-270.
  169. Tilg, H., & Moschen, A. R. (2006). Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nature Reviews Immunology, 6(10), 772-783.
  170. Tsang, M. K., Ye, W., Wang, G., Li, J., Yang, M., & Hao, J. (2016). Ultrasensitive detection of Ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. Acs Nano, 10(1), 598-605.
  171. Tyo, K. M., Lasnik, A. B., Zhang, L., Mahmoud, M., Jenson, A. B., Fuqua, J. L., ... & Steinbach-Rankins, J. M. (2020). Sustained-release Griffithsin nanoparticle-fiber composites against HIV-1 and HSV-2 infections. Journal of Controlled Release, 321, 84-99.
  172. Van Dijk, F., Teekamp, N., Beljaars, L., Post, E., Zuidema, J., Steendam, R., ... & Olinga, P. (2018). Pharmacokinetics of a sustained release formulation of PDGFβ-receptor directed carrier proteins to target the fibrotic liver. Journal of controlled release, 269, 258-265.
  173. Van Embden, J., Sader, J. E., Davidson, M., & Mulvaney, P. (2009). Evolution of colloidal nanocrystals: theory and modeling of their nucleation and growth. The Journal of Physical Chemistry C, 113(37), 16342-16355.
  174. Vellingiri, B., Jayaramayya, K., Iyer, M., Narayanasamy, A., Govindasamy, V., Giridharan, B., ... & Subramaniam, M. D. (2020). COVID-19: A promising cure for the global panic. Science of the Total Environment, 725, 138277.
  175. Vickers, N. J. (2017). Animal communication: when i’m calling you, will you answer too?. Current biology, 27(14), R713-R715.
  176. Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., ... & Jiang, T. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell host & microbe, 27(3), 325-328.
  177. Wueest, S., Item, F., Boyle, C. N., Jirkof, P., Cesarovic, N., Ellingsgaard, H., ... & Konrad, D. (2014). Interleukin-6 contributes to early fasting-induced free fatty acid mobilization in mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 306(11), R861-R867.
  178. Xia, Y., Xiong, Y., Lim, B., & Skrabalak, S. E. (2009). Shape‐controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?. Angewandte Chemie International Edition, 48(1), 60-103.
  179. Yang, X. X., Li, C. M., & Huang, C. Z. (2016). Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale, 8(5), 3040-3048.
  180. Yang, Y. (2020). Use of herbal drugs to treat COVID-19 should be with caution. The Lancet, 395(10238), 1689-1690.
  181. Yu, M., Zhu, Y. A., Lu, Y., Tong, G., Zhu, K., & Zhou, X. (2015). The promoting role of Ag in Ni-CeO2 catalyzed CH4-CO2 dry reforming reaction. Applied Catalysis B: Environmental, 165, 43-56.
  182. Zaccardi, F., Laukkanen, T., Willeit, P., Kunutsor, S. K., Kauhanen, J., & Laukkanen, J. A. (2017). Sauna bathing and incident hypertension: a prospective cohort study. American journal of hypertension, 30(11), 1120-1125.
  183. Zellner, M., Hergovics, N., Roth, E., Jilma, B., Spittler, A., & Oehler, R. (2002). Human monocyte stimulation by experimental whole body hyperthermia. Ann NY Acad Sci, 856, 171-187.
  184. Zhang, C., Li, Y., Wang, C., & Zheng, X. (2021). Different inactivation behaviors and mechanisms of representative pathogens (Escherichia coli bacteria, human adenoviruses and Bacillus subtilis spores) in g-C3N4-based metal-free visible-light-enabled photocatalytic disinfection. Science of The Total Environment, 755, 142588.
  185. Zhang, Y., Hong, H., Myklejord, D. V., & Cai, W. (2011). Molecular Imaging with SERS‐Active Nanoparticles. Small, 7(23), 3261-3269.
  186. Zhao, K., Li, W., Huang, T., Luo, X., Chen, G., Zhang, Y., ... & Wang, Y. (2013). Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in PLGA nanoparticles. PLoS One, 8(12), e82648.
  187. Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., ... & Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature, 579(7798), 270-273.
  188. Zhu, X., Wang, X., Han, L., Chen, T., Wang, L., Li, H., ... & Wang, Y. (2020). Reverse transcription loop-mediated isothermal amplification combined with nanoparticles-based biosensor for diagnosis of COVID-19. MedRxiv.
  189. Zou, L., Qi, W., Huang, R., Su, R., Wang, M., & He, Z. (2013). Green synthesis of a gold nanoparticle–nanocluster composite nanostructures using trypsin as linking and reducing agents. ACS Sustainable Chemistry & Engineering, 1(11), 1398-1404.
  190. Zumla, A., Hui, D. S., Azhar, E. I., Memish, Z. A., & Maeurer, M. (2020). Reducing mortality from 2019-nCoV: host-directed therapies should be an option. The Lancet, 395(10224), e35-e36.
  191. Zuo, X., Chu, X., & Hu, J. (2015). Effects of water matrix on virus inactivation using common virucidal techniques for condensate urine disinfection. Chemosphere, 136, 118-124.

How to Cite

Futuristic role of nanoparticles for treatment of COVID-19. (2022). Biomaterials and Polymers Horizon, 1(2). https://doi.org/10.37819/bph.001.02.0166

How to Cite

Futuristic role of nanoparticles for treatment of COVID-19. (2022). Biomaterials and Polymers Horizon, 1(2). https://doi.org/10.37819/bph.001.02.0166

HTML
729

Total
227

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2022 Naveen Thakur

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.