Skip to main content Skip to main navigation menu Skip to site footer

Bio-based castor oil and lignin sulphonate: aqueous dispersions and shape-memory films

  • Samy A. Madbouly

Abstract

Aqueous polyurethane dispersions based on castor oil and lignin sulphonate (LS) were successfully synthesized in homogenous solution with nanoscale PU-lignin particle sizes as small as 35 nm. The particles size was found to be LS independent, while the dispersion viscosity increases dramatically with increasing the LS content. The increase in viscosity with increasing LS content was explained based on the chemical structure of LS. The LS is a water-soluble material and chemically reacted with diisocyanate to become a part of the dispersion particle (i.e., the nanoparticles is in fact a mixture or copolymer of castor oil-based polyurethane and lignin dispersed in water). The affinity of the PU-LS nanoparticle towards water could be increased with increasing the content of LS. Therefore, the PU-LS nanoparticle can adsorb thick water layer with increasing the LS content. According to this  suggestion, the free water in the dispersion would significantly decrease and consequently the dispersion viscosity increases considerably. The cross-link density was also increased with increasing the LS content of the thin films obtained from dispersion cast. The PU-LS thin films obtained from dispersion cast showed an excellent shape-memory effect and the shape recovery was found to be strongly LS dependent. Furthermore, the supper critical CO2 solution was used successfully to create three-dimensional porous structure of PU-LS with cell size depends on LS content. The temporary folded shape of PU-LS with 5 wt.% LS changed to its permanent shape (plane stripe) within just 17 s once the sample was immersed in a water bath at the programing temperature.

Section

References

  1. Akram, N., Zia, K.M., Saeed, M., Khosa, M.K., Khan, W.G. and Arain, M.A. (2020). Compositional effect on the deformation behavior of polyurethane pressure‐sensitive adhesive thin films. Journal of Applied Polymer Science, 137(8), p.48395.
  2. Andjelkovic, D. D.; Larock, R. C. (2006). Novel Rubbers from cationic copolymerization of soybean oils and dicyclopentadiene. 1. Synthesis and characterization. Biomacromolecules 7, 927– 936,
  3. Araby, S., Philips, B., Meng, Q., Ma, J., Laoui, T. and Wang, C.H. (2021). Recent advances in carbon-based nanomaterials for flame retardant polymers and composites. Composites Part B: Engineering, p.108675
  4. Bellin, I., Kelch, S., Langer, R. and Lendlein, A. (2006) Polymeric triple-shape materials. Proceedings of the National Academy of Sciences, 103(48), pp.18043-18047.
  5. Bockisch, M. (2015). Fats and oils handbook (Nahrungsfette und Öle). Elsevier.
  6. Chowdhury, R. A.; Clarkson, C. M.; Shrestha, S.; El Awad Azrak, S. M.; Mavlan, M.; Youngblood, J. P. (2020) High-Performance Waterborne Polyurethane Coating Based on a Blocked Isocyanate with Cellulose Nanocrystals (CNC) as the Polyol. ACS Appl. Polym. Mater. 2, 385– 393.
  7. Dahy, H. (2017). Biocomposite materials based on annual natural fibres and biopolymers–Design, fabrication and customized applications in architecture. Construction and Building Materials, 147, pp.212-220.
  8. Dieterich, D., Keberle, W. and Wuest, R. (1970). Aqueous dispersions of polyurethane ionomers. Journal Of The Oil & Colour Chemists Association, 53(5), pp.363-379.
  9. Dieterich, D. (1981). Aqueous emulsions, dispersions and solutions of polyurethanes; synthesis and properties. Progress in Organic Coatings, 9(3), pp.281-340.
  10. Dong, X., Dong, M., Lu, Y., Turley, A., Jin, T. and Wu, C. (2011). Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Industrial Crops and Products, 34(3), pp.1629-1634.
  11. El-Sherbiny, I.M. and Ali, I.H. (2017). Biopolymer‐Based Nanocomposites for Environmental Applications. Handbook of Composites from Renewable Materials, Nanocomposites: Advanced Applications, 8, p.389.
  12. Freed, L.E., Vunjak-Novakovic, G., Biron, R.J., Eagles, D.B., Lesnoy, D.C., Barlow, S.K. and Langer, R. (1994). Biodegradable polymer scaffolds for tissue engineering. Bio/technology, 12(7), pp.689-693.
  13. Gaddam, S. K.; Palanisamy, A. (2018). Effect of counterion on the properties of anionic waterborne polyurethane dispersions developed from cottonseed oil-based polyol. J. Polym. Res. 25, 1– 86.
  14. Gandini, A.; Lacerda, T. M.; Carvalho, A. J. F.; Trovatti, E. (2016). Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides. Chem. Rev. 116, 1637– 1669,
  15. Gogoi, S.; Karak, N. (2014). Bio-based biodegradable waterborne hyperbranched polyurethane as an ecofriendly sustainable material. ACS Sustain. Chem. Eng., 2, 2730– 2738.
  16. Gutiérrez, T.J. and Alvarez, V.A. (2017). Cellulosic materials as natural fillers in starch-containing matrix-based films: a review. Polymer Bulletin, 74(6), pp.2401-2430.
  17. Hakke, V.S., Bagale, U.D., Boufi, S., Babu, G.U.B. and Sonawane, S.H. (2020). Ultrasound Assisted Synthesis of Starch Nanocrystals and It’s Applications with Polyurethane for Packaging Film. Journal of Renewable Materials, 8(3), p.239.
  18. Hussain, N., Bilal, M. and Iqbal, H.M. (2022). Carbon-based nanomaterials with multipurpose attributes for water treatment: Greening the 21st-century nanostructure materials deployment. Biomaterials and Polymers Horizon, 1(1), pp.48-58.
  19. Ionescu, E., Bernard, S., Lucas, R., Kroll, P., Ushakov, S., Navrotsky, A. and Riedel, R. (2021). Polymer-derived ultra-high temperature ceramics (UHTCs) and related materials. Ceramics, Glass and Glass-Ceramics, pp.281-323.
  20. Jamróz, E., Kulawik, P. and Kopel, P. The effect of nanofillers on the functional properties of biopolymer-based films: A review. Polymers, 11(4), p.675, 2019. https://www.mdpi.com/2073-4360/11/4/675
  21. Jiang, H.Y., Kelch, S. and Lendlein, A. (2006). Polymers move in response to light. Advanced Materials, 18(11), pp.1471-1475.
  22. Jiménez, A.M., Espinach, F.X., Delgado-Aguilar, M., Reixach, R., Quintana, G., Fullana-i-Palmer, P. and Mutjé, P. (2016). Starch-based biopolymer reinforced with high yield fibers from sugarcane bagasse as a technical and environmentally friendly alternative to high density polyethylene. BioResources, 11(4), pp.9856-9868.
  23. Kai, D.; Zhang, K.; Jiang, L.; Wong, H. Z.; Li, Z.; Zhang, Z.; Loh, X. J. (2017) Sustainable and antioxidant lignin–polyester copolymers and nanofibers for potential healthcare applications. ACS Sustainable Chem. Eng. 5, 6016– 6025.
  24. Kratz, K., Madbouly, S.A., Wagermaier, W. and Lendlein, A. (2011) Temperature‐memory polymer networks with crystallizable controlling units. Advanced Materials, 23(35), pp.4058-4062.
  25. Kumar, A., Sood, A. and Han, S.S. (2022). Potential of magnetic nano cellulose in biomedical applications: Recent Advances. Biomaterials and Polymers Horizon, 1(1), pp.1-16.
  26. Kundu, P. P.; Larock, R. C. Novel conjugated linseed oil-styrene-divinylbenzene copolymers prepared by thermal polymerization. 1. (2005). Effect of monomer concentration on the structure and properties. Biomacromolecules 6, 797– 806,
  27. Lligadas, G., Ronda, J.C., Galia, M. and Cadiz, V., 2013. (2013) Renewable polymeric materials from vegetable oils: a perspective. Materials today, 16(9), pp.337-343.
  28. Lebo, S. E., Jr.; Gargulak, J. D.; McNally, T. J. (2001). Lignin″. Kirk-Othmer Encyclopedia of Chemical Technology.
  29. Lendlein, A. and Gould, O.E.(2019). Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nature Reviews Materials, 4(2), pp.116-133.
  30. Lendlein, A., Jiang, H., Jünger, O. and Langer, R. (2005). Light-induced shape-memory polymers. Nature, 434(7035), pp.879-882.
  31. Liu, F.; Zhang, Z.; Wang, Z.; Dai, X.; Chen, M.; Zhang, J. (2020). Novel lignosulfonate/N, N-dimethylacrylamide/γ-methacryloxypropyl trimethoxy silane graft copolymer as a filtration reducer for water-based drilling fluids. J. Appl. Polym. Sci. 137, 48274.
  32. Li, H.; Sun, J.-T.; Wang, C.; Liu, S.; Yuan, D.; Zhou, X.; Tan, J.; Stubbs, L.; He, C. (2017). High modulus, strength, and toughness polyurethane elastomer based on unmodified lignin. ACS Sustainable Chem. Eng. 5, 7942– 7949.
  33. Liu, W.; Fang, C.; Wang, S.; Huang, J.; Qiu, X. (2019). High- Performance Lignin-Containing Polyurethane Elastomers with Dynamic Covalent Polymer Networks. Macromolecules 52, 6474– 6484.
  34. Lo, H., Ponticiello, M.S. and Leong, K.W. (1995). Fabrication of controlled release biodegradable foams by phase separation. Tissue engineering, 1(1), pp.15-28.
  35. Lu, Y. and Larock, R.C. (2009). Novel polymeric materials from vegetable oils and vinyl monomers: preparation, properties, and applications. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2(2), pp.136-147.
  36. Madbouly, S.A. and Lendlein, A.(2012). Degradable polyurethane/soy protein shape‐memory polymer blends prepared via environmentally‐friendly aqueous dispersions. Macromolecular materials and engineering, 297(12), pp.1213-1224.
  37. Madbouly, S.A. and Lendlein, A. (2009). Shape-memory polymer composites. In Shape-Memory Polymers (pp. 41-95). Springer, Berlin, Heidelberg.
  38. Madbouly, S. A.; Otaigbe, J. U. (2009). Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Prog. Polym. Sci. 34, 1283– 1332.
  39. Madbouly, S. A.; Otaigbe, J. U. (2006). Kinetic analysis of fractal gel formation in waterborne polyurethane dispersions undergoing high deformation flows. Macromolecules 39, 4144– 4151.
  40. Madbouly, S. A.; Xia, Y.; Kessler, M. R. (2013). Rheological Behavior of Environmentally friendly castor oil-based waterborne polyurethane dispersions. Macromolecules 46, 4606– 4616.
  41. Mehravar, S., Ballard, N., Tomovska, R. and Asua, J.M. (2019). Polyurethane/Acrylic Hybrid Waterborne Dispersions: Synthesis, Properties and Applications. Industrial & Engineering Chemistry Research, 58(46), pp.20902-20922.
  42. Mikos, A.G., Thorsen, A.J., Czerwonka, L.A., Bao, Y., Langer, R., Winslow, D.N. and Vacanti, J.P. (1994). Preparation and characterization of poly (L-lactic acid) foams. Polymer, 35(5), pp.1068-1077.
  43. Mittal, D., Kumar, A., Balasubramaniam, B., Thakur, R., Siwal, S.S., Saini, R.V., Gupta, R.K. and Saini, A.K., (2022). Synthesis of Biogenic silver nanoparticles using plant growth-promoting bacteria: Potential use as biocontrol agent against phytopathogens. Biomaterials and Polymers Horizon, 1(1), pp.1-10.
  44. Mishra, V., Desai, J. and Patel, K.I. (2017). High-performance waterborne UV-curable polyurethane dispersion based on thiol–acrylate/thiol–epoxy hybrid networks. Journal of Coatings Technology and Research, 14(5), pp.1069-1081.
  45. Mishra, R.K., Goel, S. and Nezhad, H.Y. (2022). Computational prediction of electrical and thermal properties of graphene and BaTiO3 reinforced epoxy nanocomposites. Biomaterials and polymers horizon, 1(1), pp.1-14.
  46. Mowafi, S., El-Sayed, H. and Abou Taleb, M. (2018). Utilization of proteinic biopolymers: Current status and future prospects. Journal of Textiles, Coloration and Polymer Science, 15(1), pp.15-31.
  47. Santo, L., Quadrini, F., Bellisario, D. and Iorio, L. (2020). Applications of Shape-Memory Polymers, and Their Blends and Composites. Shape Memory Polymers, Blends and Composites (pp. 311-329). Springer, Singapore.
  48. Sharma, S., Sharma, A., Mulla, S.I., Pant, D., Sharma, T. and Kumar, A.(2020). Lignin as Potent Industrial Biopolymer: An Introduction. In Lignin (pp. 1-15). Springer, Cham.
  49. Serkis, M., Špírková, M., Hodan, J. and Kredatusová, J. (2016). Nanocomposites made from thermoplastic waterborne polyurethane and colloidal silica. The influence of nanosilica type and amount on the functional properties. Progress in Organic Coatings, 101, pp.342-349.
  50. Shi, S.C. and Lu, F.I. (2016). Biopolymer green lubricant for sustainable manufacturing. Materials, 9(5), p.338.
  51. Singh, L., Kumar, V. and Ratner, B.D. (2004). Generation of porous microcellular 85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications. Biomaterials, 25(13), pp.2611-2617.
  52. Song, S.C., Kim, S.J., Park, K.K., Oh, J.G., Bae, S.G., Noh, G.H. and Lee, W.K. (2017). Synthesis and properties of waterborne UV-curable polyurethane acrylates using functional isocyanate. Molecular Crystals and Liquid Crystals, 659(1), pp.40-45.
  53. Tai, H., Mather, M.L., Howard, D., Wang, W., White, L.J., Crowe, J.A., Morgan, S.P., Chandra, A., Williams, D.J., Howdle, S.M. and Shakesheff, K.M. (2007). Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Eur Cell Mater, 14, pp.64-77.
  54. Visakh, P.M. (2019). Biomonomers for Green Polymers: Introduction. Bio Monomers for Green Polymeric Composite Materials, pp.1-24.
  55. Wang, S.; Liu, W.; Yang, D.; Qiu, X. (2019). Highly resilient lignin- containing polyurethane foam. Ind. Eng. Chem. Res. 58, 496– 504.
  56. Ward, I. M. (1971). Mechanical Properties of Solid Polymers; Wiley Interscience: New York.
  57. Winnacker, M.; Rieger, B. (2016). Biobased Polyamides: Recent Advances in Basic and Applied Research. Macromol. Rapid Commun. 37, 1391– 1413,
  58. Wróblewska-Krepsztul, J., Rydzkowski, T., Borowski, G., Szczypiński, M., Klepka, T. and Thakur, V.K. (2018). Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization, 23(4), pp.383-395.
  59. Wu, M.; Zhang, Y.; Peng, Q.; Song, L.; Hu, Z.; Li, Z.; Wang, Z. (2018). Mechanically strong plant oil-derived thermoplastic polymers prepared via cellulose graft strategy. Appl. Surf. Sci. 458, 495– 502.
  60. Xia, Y.; Larock, R. C. (2010). Castor oil-based thermosets with varied crosslink densities prepared by ring-opening metathesis polymerization (ROMP). Polymer 51, 2508– 2514,
  61. Xie, T., Kao, W., Sun, L., Wang, J., Dai, G. and Li, Z.(2020). Preparation and characterization of self-matting waterborne polymer–An overview. Progress in Organic Coatings, 142, p.105569.
  62. Yang, D.-P.; Li, Z.; Liu, M.; Zhang, X.; Chen, Y.; Xue, H.; Ye, E.; Luque, R. (2019). Biomass-derived carbonaceous materials: recent progress in synthetic approaches, advantages, and applications. ACS Sustainable Chem. Eng. 7, 4564– 4585.
  63. Yan, Y., Sun, Y., Li, B. and Zhou, P. (2022). An experimental study of PMMA precision cryogenic micro-milling. Biomaterials and Polymers Horizon, 1(1), pp.1-7.
  64. Yuan, L.; Wang, Z.; Trenor, N. M.; Tang, C. (2015). Robust Amidation transformation of plant oils into fatty derivatives for sustainable monomers and polymers. Macromolecules 48, 1320– 1328,
  65. Zafar, R., Zia, K.M., Tabasum, S., Jabeen, F., Noreen, A. and Zuber, M. (2016). Polysaccharide based bionanocomposites, properties and applications: A review. International journal of biological macromolecules, 92, pp.1012-1024.
  66. Zafar, F.; Ghosal, A.; Sharmin, E.; Chaturvedi, R.; Nishat, N. (2019). A review on cleaner production of polymeric and nanocomposite coatings based on waterborne polyurethane dispersions from seed oils. Prog. Org. Coat. 131, 259– 275.
  67. Zakzeski, J., Bruijnincx, P.C., Jongerius, A.L. and Weckhuysen, B.M. (2010). The catalytic valorization of lignin for the production of renewable chemicals. Chemical reviews, 110(6), pp.3552-3599.
  68. Zhang, X.; Jeremic, D.; Kim, Y.; Street, J.; Shmulsky, R. (2018). Effects of Surface Functionalization of Lignin on Synthesis and Properties of Rigid Bio-Based Polyurethanes Foams. Polymers 10, 706.
  69. Zhang, C.; Wu, H.; Kessler, M. R. (2015). High bio-content polyurethane composites with urethane modified lignin as filler. Polymer, 69, 52– 57.
  70. Zhang, C.; Garrison, T. F.; Madbouly, S. A.; Kessler, M. R. (2017). Recent advances in vegetable oil-based polymers and their composites. Prog. Polym. Sci. 71, 91– 143.
  71. Zhang, C.; Madbouly, S. A.; Kessler, M. R. (2015). Bio-based Polyurethanes Prepared from different vegetable oils. ACS Appl. Mater. Interfaces 7, 1226– 1233.
  72. Zhao, Y., Teixeira, J.S., Gänzle, M.M. and Saldaña, M.D. (2018). Development of antimicrobial films based on cassava starch, chitosan and gallic acid using subcritical water technology. The Journal of Supercritical Fluids, 137, pp.101-110.
  73. Zhou, X., Fang, C., Chen, J., Li, S., Li, Y. and Lei, W. (2016). Correlation of raw materials and waterborne polyurethane properties by sequence similarity analysis. Journal of Materials Science & Technology, 32(7), pp.687-694.
  74. Zhu, Y.; Romain, C.; Williams, C. K. (2016). Sustainable polymers from renewable resource. Nature 540, 354– 362.

How to Cite

Bio-based castor oil and lignin sulphonate: aqueous dispersions and shape-memory films . (2022). Biomaterials and Polymers Horizon, 1(2). https://doi.org/10.37819/bph.001.02.0136

How to Cite

Bio-based castor oil and lignin sulphonate: aqueous dispersions and shape-memory films . (2022). Biomaterials and Polymers Horizon, 1(2). https://doi.org/10.37819/bph.001.02.0136

HTML
473

Total
276

Share

Search Panel

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2021 Samy A. Madbouly

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.