Skip to main content Skip to main navigation menu Skip to site footer

Potential of magnetic nano cellulose in biomedical applications: Recent Advances

  • Anuj Kumar
  • Ankur Sood
  • Sung Soo Han

Abstract

Biopolymers have attracted considerable attention in various biomedical applications. Among them, cellulose as sustainable and renewable biomass has shown potential efficacy. With the advancement in nanotechnology, a wide range of nanostructured materials have surfaced with the potential to offer substantial biomedical applications. . The progress of cellulose at the nanoscale regime (nanocelluloses) with diverse forms like cellulose nanocrystals, nanofibres and bacterial nanocellulose) has imparted remarkable properties like high aspect-ratio and high mechanical strength, and biocompatibility. The amalgamation of nanocellulose together with magnetic nanoparticles (MNC) could be explored for a synergistic effect. In this review, a brief introduction of nano cellulose , magnetic nanoparticles and the synergistic effect of MNC is described. Further, the review sheds light on the recent studies based on MNCs with their potential in the biomedical area. Finally, the review is concluded by citing the remarkable value of MNC with their futuristic applications in other fields like friction layers for triboelectric nanogenerator (TENG), energy production, hydrogen splitting, and wearable electronics.

Section

References

  1. Amiralian, N., Mustapic, M., Hossain, M. S. A., Wang, C., Konarova, M., Tang, J.,….& Rowan, A. (2020). Magnetic nanocellulose: A potential material for removal of dye from water. Journal of Hazardous Materials, 394, 122571. https://doi.org/10.1016/j.jhazmat.2020.122571
  2. Anderson, S. D., Gwenin, V. V., & Gwenin, C. D. (2019). Magnetic Functionalized Nanoparticles for Biomedical, Drug Delivery and Imaging Applications. Nanoscale Research Letters, 14(1), 188. https://doi.org/10.1186/s11671-019-3019-6
  3. Anirudhan, T., & Rejeena, S. (2013). Poly (methacrylic acid-co-vinyl sulfonic acid)-grafted-magnetite/nanocellulose superabsorbent composite for the selective recovery and separation of immunoglobulin from aqueous solutions. Separation and Purification Technology, 119, 82-93. https://doi.org/10.1016/j.seppur.2013.08.019
  4. Anirudhan, T. S., & Rejeena, S. R. (2014). Aminated β-cyclodextrin-modified-carboxylated magnetic cobalt/nanocellulose composite for tumor-targeted gene delivery. Journal of Applied Chemistry, 2014. http://dx.doi.org/10.1155/2014/184153
  5. Arias, S. L., Shetty, A., Devorkin, J., & Allain, J.-P. (2018). Magnetic targeting of smooth muscle cells in vitro using a magnetic bacterial cellulose to improve cell retention in tissue-engineering vascular grafts. Acta biomaterialia, 77, 172-181. https://doi.org/10.1016/j.actbio.2018.07.013
  6. Arias, S. L., Shetty, A. R., Senpan, A., Echeverry-Rendón, M., Reece, L. M., & Allain, J. P. (2016). Fabrication of a functionalised magnetic bacterial nanocellulose with iron oxide nanoparticles. Journal of visualised experiments: JoVE (111). https://dx.doi.org/10.3791%2F52951
  7. Arora, V., Sood, A., Kumari, S., Kumaran, S. S., & Jain, T. K. (2020). Hydrophobically modified sodium alginate conjugated plasmonic magnetic nanocomposites for drug delivery & magnetic resonance imaging. Materials Today Communications, 25, 101470. https://doi.org/10.1016/j.mtcomm.2020.101470
  8. Arruebo, M., Fernández-Pacheco, R., Ibarra, M. R., & Santamaría, J. (2007). Magnetic nanoparticles for drug delivery. Nano Today, 2(3), 22-32. https://doi.org/10.1016/S1748-0132(07)70084-1
  9. Barhoum, A., Jeevanandam, J., Rastogi, A., Samyn, P., Boluk, Y., Dufresne, A.,….& Bechelany, M. (2020). Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale, 12(45), 22845-22890. https://doi.org/10.1039/D0NR04795C
  10. Barroso, A., Mestre, H., Ascenso, A., Simões, S., & Reis, C. (2020). Nanomaterials in wound healing: From material sciences to wound healing applications. Nano Select, 1(5), 443-460. https://doi.org/10.1002/nano.202000055
  11. Beluns, S., Gaidukovs, S., Platnieks, O., Gaidukova, G., Mierina, I., Grase, L., Starkova, O., Brazdausks, P., & Thakur, V. K. (2021). From Wood and Hemp Biomass Wastes to Sustainable Nanocellulose Foams. Industrial Crops and Products, 170, 113780. https://doi.org/10.1016/j.indcrop.2021.113780
  12. Cao, S.-L., Xu, H., Li, X.-H., Lou, W.-Y., & Zong, M.-H. (2015). Papain@ magnetic nanocrystalline cellulose nanobiocatalyst: a highly efficient biocatalyst for dipeptide biosynthesis in deep eutectic solvents. ACS Sustainable Chemistry & Engineering, 3(7), 1589-1599. https://doi.org/10.1021/acssuschemeng.5b00290
  13. Chaabane, L., Chahdoura, H., Mehdaoui, R., Snoussi, M., Beyou, E., Lahcini, M., & Baouab, M. H. V. (2020). Functionalisation of developed bacterial cellulose with magnetite nanoparticles for nanobiotechnology and nanomedicine applications. Carbohydrate Polymers, 247, 116707. https://doi.org/10.1016/j.carbpol.2020.116707
  14. De France, K. J., Hoare, T., & Cranston, E. D. (2017). Review of hydrogels and aerogels containing nanocellulose. Chemistry of Materials, 29(11), 4609-4631. https://doi.org/10.1021/acs.chemmater.7b00531
  15. Drozd, R., Szymańska, M., Rakoczy, R., Junka, A., Szymczyk, P., & Fijałkowski, K. (2019). Functionalized magnetic bacterial cellulose beads as carrier for Lecitase® Ultra immobilization. Applied biochemistry and biotechnology, 187(1), 176-193. https://doi.org/10.1007/s12010-018-2816-1
  16. Du, H., Liu, W., Zhang, M., Si, C., Zhang, X., & Li, B. (2019). Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydrate Polymers, 209, 130-144. https://doi.org/10.1016/j.carbpol.2019.01.020
  17. Dürr, S., Janko, C., Lyer, S., Tripal, P., Schwarz, M., Zaloga, J.,….& Alexiou, C. (2013). Magnetic nanoparticles for cancer therapy. Nanotechnology Reviews, 2(4), 395-409. https://doi.org/10.2174/157341308783591861
  18. Echeverry‐Rendon, M., Reece, L. M., Pastrana, F., Arias, S. L., Shetty, A. R., Pavón, J. J., & Allain, J. P. (2017). Bacterial Nanocellulose Magnetically Functionalized for Neuro‐Endovascular Treatment. Macromolecular bioscience, 17(6), 1600382. https://doi.org/10.1002/mabi.201600382
  19. El-Boubbou, K. (2018). Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery. Nanomedicine, 13(8), 929-952. https://doi.org/10.2217/nnm-2017-0320
  20. Fathi-Achachelouei, M., Knopf-Marques, H., Ribeiro da Silva, C. E., Barthès, J., Bat, E., Tezcaner, A., & Vrana, N. E. (2019). Use of Nanoparticles in Tissue Engineering and Regenerative Medicine [Review]. Frontiers in Bioengineering and Biotechnology, 7(113). https://doi.org/10.3389/fbioe.2019.00113
  21. Ferreira, F. V., Otoni, C. G., De France, K. J., Barud, H. S., Lona, L. M. F., Cranston, E. D., & Rojas, O. J. (2020). Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering. Materials Today, 37, 126-141. https://doi.org/10.1016/j.mattod.2020.03.003
  22. Galateanu, B., Bunea, M.-C., Stanescu, P., Vasile, E., Casarica, A., Iovu, H.,….& Costache, M. (2015). In vitro studies of bacterial cellulose and magnetic nanoparticles smart nanocomposites for efficient chronic wounds healing. Stem cells international, 2015. https://doi.org/10.1155/2015/195096
  23. Gennari, A., Mobayed, F. H., Da Rolt Nervis, B., Benvenutti, E. V., Nicolodi, S., da Silveira, N. d. P.,….& Volken de Souza, C. F. (2019). Immobilisation of β-galactosidases on magnetic nanocellulose: textural, morphological, magnetic, and catalytic properties. Biomacromolecules, 20(6), 2315-2326. https://doi.org/10.1021/acs.biomac.9b00285
  24. Gu, H., Xu, K., Xu, C., & Xu, B. (2006). Biofunctional magnetic nanoparticles for protein separation and pathogen detection [10.1039/B514130C]. Chemical Communications(9), 941-949. https://doi.org/10.1039/B514130C
  25. Gul, S., Khan, S. B., Rehman, I. U., Khan, M. A., & Khan, M. I. (2019). A Comprehensive Review of Magnetic Nanomaterials Modern Day Theranostics [Review]. Frontiers in Materials, 6(179). https://doi.org/10.3389/fmats.2019.00179
  26. Guo, J., Filpponen, I., Johansson, L.-S., Mohammadi, P., Latikka, M., Linder, M. B.,….& Rojas, O. J. (2017). Complexes of magnetic nanoparticles with cellulose nanocrystals as regenerable, highly efficient, and selective platform for protein separation. Biomacromolecules, 18(3), 898-905. https://doi.org/10.1021/acs.biomac.6b01778
  27. Haider, A., Haider, S., Kang, I.-K., Kumar, A., Kummara, M. R., Kamal, T., & Han, S. S. (2018). A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent. International Journal of Biological Macromolecules, 108, 455-461. https://doi.org/10.1016/j.ijbiomac.2017.12.022
  28. Heidarian, P., Kaynak, A., Paulino, M., Zolfagharian, A., Varley, R., & Kouzani, A. Z. (2021). Dynamic Nanocellulose Hydrogels: Recent Advancements and Future Outlook. Carbohydrate Polymers, 118357. https://doi.org/10.1016/j.carbpol.2021.118357
  29. Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme immobilisation: an update. Journal of chemical biology, 6(4), 185-205. https://doi.org/10.1007/s12154-013-0102-9
  30. Isogai, A. (2021). Emerging nanocellulose technologies: Recent developments. Advanced Materials, 33(28), 2000630. https://doi.org/10.1002/adma.202000630
  31. Jain, T. K., Richey, J., Strand, M., Leslie-Pelecky, D. L., Flask, C. A., & Labhasetwar, V. (2008). Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials, 29(29), 4012-4021. https://doi.org/10.1016/j.biomaterials.2008.07.004
  32. Kim, J. S., Kuk, E., Yu, K. N., Kim, J.-H., Park, S. J., Lee, H. J.,….& Cho, M.-H. (2007). Anti-microbial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95-101. https://doi.org/10.1016/j.nano.2006.12.001
  33. Klemm, F., Maas, R. R., Bowman, R. L., Kornete, M., Soukup, K., Nassiri, S.,….& Joyce, J. A. (2020). Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells. Cell, 181(7), 1643-1660.e1617. https://doi.org/10.1016/j.cell.2020.05.007
  34. Kumar, A., Negi, Y. S., Bhardwaj, N. K., & Choudhary, V. (2012). Synthesis and characterisation of methylcellulose/PVA based porous composite. Carbohydrate Polymers, 88(4), 1364-1372. https://doi.org/10.1016/j.carbpol.2012.02.019
  35. Kummara, M. R., Kumar, A., & Sung Soo, H. (2017). Development of antibacterial paper coated with sodium hyaluronate stabilised curcumin-Ag nanohybrid and chitosan via polyelectrolyte complexation for medical applications. Materials Research Express, 4(11), 115401. https://doi.org/10.1088/2053-1591/aa9551
  36. Lee, C.-K., & Au-Duong, A.-N. (2018). Enzyme Immobilisation on Nanoparticles: Recent Applications. In Emerging Areas in Bioengineering, 1st edn.; Chang, H. N., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 67–80. https://doi.org/10.1002/9783527803293.ch4
  37. Li, Y.-C. E. (2019). Sustainable Biomass Materials for Biomedical Applications. ACS Biomaterials Science & Engineering, 5(5), 2079-2092. https://doi.org/10.1021/acsbiomaterials.8b01634
  38. Li, Y.-Y., Wang, B., Ma, M.-G., & Wang, B. (2018). Review of recent development on preparation, properties, and applications of cellulose-based functional materials. International Journal of Polymer Science, 2018. https://doi.org/10.1155/2018/8973643
  39. Liu, S., Li, Z., Yu, B., Wang, S., Shen, Y., & Cong, H. (2020). Recent advances on protein separation and purification methods. Advances in Colloid and Interface Science, 284, 102254. https://doi.org/10.1016/j.cis.2020.102254
  40. Mahapatra, S. D., Mohapatra, P. C., Aria, A. I., Christie, G., Mishra, Y. K., Hofmann, S., & Thakur, V. K. (2021). Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials. Advanced Science, 8(17), 2100864. https://doi.org/10.1002/advs.202100864
  41. Matiiv, A. B., Trubitsina, N. P., Matveenko, A. G., Barbitoff, Y. A., Zhouravleva, G. A., & Bondarev, S. A. (2020). Amyloid and Amyloid-Like Aggregates: Diversity and the Term Crisis. Biochemistry (Moscow), 85(9), 1011-1034.
  42. Moniri, M., Moghaddam, A. B., Azizi, S., Rahim, R. A., Saad, W. Z., Navaderi, M.,….& Mohamad, R. (2018). Molecular study of wound healing after using biosynthesised BNC/Fe3O4 nanocomposites assisted with a bioinformatics approach. International journal of nanomedicine, 13, 2955. https://dx.doi.org/10.2147%2FIJN.S159637
  43. Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994. https://doi.org/10.1039/C0CS00108B
  44. Moosavi, S., Lai, C. W., Gan, S., Zamiri, G., Akbarzadeh Pivehzhani, O., & Johan, M. R. (2020). Application of Efficient Magnetic Particles and Activated Carbon for Dye Removal from Wastewater. ACS Omega, 5(33), 20684-20697. https://doi.org/10.1021/acsomega.0c01905
  45. Mosayebi, J., Kiyasatfar, M., & Laurent, S. (2017). Synthesis, Functionalisation, and Design of Magnetic Nanoparticles for Theranostic Applications. Advanced Healthcare Materials, 6(23), 1700306. https://doi.org/10.1002/adhm.201700306
  46. Nagai, H., & Kim, Y. H. (2017). Cancer prevention from the perspective of global cancer burden patterns. Journal of thoracic disease, 9(3), 448-451. https://dx.doi.org/10.21037%2Fjtd.2017.02.75
  47. Nasrollahzadeh, M., Issaabadi, Z., Sajjadi, M., Sajadi, S. M., & Atarod, M. (2019). Chapter 2 - Types of Nanostructures. In M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, Z. Issaabadi, & M. Atarod (Eds.), Interface Science and Technology (Vol. 28, pp. 29-80). Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00002-X
  48. Neibolts, N., Platnieks, O., Gaidukovs, S., Barkane, A., Thakur, V. K., Filipova, I., Mihai, G., Zelca, Z., Yamaguchi, K., & Enachescu, M. (2020). Needle-free electrospinning of nanofibrillated cellulose and graphene nanoplatelets based sustainable poly (butylene succinate) nanofibers. Materials Today Chemistry, 17, 100301. https://doi.org/10.1016/j.mtchem.2020.100301
  49. Niaounakis, M. (2015). Manufacture of Biocomposites. In M. Niaounakis (Ed.), Biopolymers: Processing and Products (pp. 411-430). William Andrew Publishing. Ning, P., Yang, G., Hu, L., Sun, J., Shi, L., Zhou, Y., Wang, Z., & Yang, J. (2021). Recent advances in the valorisation of plant biomass. Biotechnology for Biofuels, 14(1), 102. https://doi.org/10.1186/s13068-021-01949-3
  50. Nune, S. K., Gunda, P., Thallapally, P. K., Lin, Y.-Y., Forrest, M. L., & Berkland, C. J. (2009). Nanoparticles for biomedical imaging. Expert opinion on drug delivery, 6(11), 1175-1194. https://doi.org/10.1517/17425240903229031
  51. Nypelö, T., Rodriguez-Abreu, C., Rivas, J., Dickey, M. D., & Rojas, O. J. (2014). Magneto-responsive hybrid materials based on cellulose nanocrystals. Cellulose, 21(4), 2557-2566. https://doi.org/10.1007/s10570-014-0307-2
  52. Pastrana, H. F., Cooper, C. L., Alucozai, M., Reece, L. M., Avila, A. G., & Allain, J. P. (2016). Synthesis and in vitro safety assessment of magnetic bacterial cellulose with porcine aortic smooth muscle cells. Journal of Biomedical Materials Research Part A, 104(11), 2801-2809. https://doi.org/10.1002/jbm.a.35824
  53. Patil, T. V., Patel, D. K., Dutta, S. D., Ganguly, K., Santra, T. S., & Lim, K.-T. (2021). Nanocellulose, a versatile platform: From the delivery of active molecules to tissue engineering applications. Bioactive Materials. https://doi.org/10.1016/j.bioactmat.2021.07.006
  54. Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. d. P., Acosta-Torres, L. S.,….& Shin, H.-S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71. https://doi.org/10.1186/s12951-018-0392-8
  55. Pavón, J. J., Allain, J. P., Verma, D., Echeverry‐Rendón, M., Cooper, C. L., Reece, L. M., Shetty, A. R., & Tomar, V. (2019). In situ Study Unravels Bio‐Nanomechanical Behavior in a Magnetic Bacterial Nano‐cellulose (MBNC) Hydrogel for Neuro‐Endovascular Reconstruction. Macromolecular bioscience, 19(2), 1800225. https://doi.org/10.1002/mabi.201800225
  56. Platnieks, O., Gaidukovs, S., Barkane, A., Sereda, A., Gaidukova, G., Grase, L., Thakur, V. K., Filipova, I., Fridrihsone, V., Skute, M., & Laka, M. (2020). Bio-Based Poly(butylene succinate)/Microcrystalline Cellulose/Nanofibrillated Cellulose-Based Sustainable Polymer Composites: Thermo-Mechanical and Biodegradation Studies. Polymers, 12(7), 1472. https://doi.org/10.3390/polym12071472
  57. Platnieks, O., Sereda, A., Gaidukovs, S., Thakur, V. K., Barkane, A., Gaidukova, G., Filipova, I., Ogurcovs, A., & Fridrihsone, V. (2021). Adding value to poly (butylene succinate) and nanofibrillated cellulose-based sustainable nanocomposites by applying masterbatch process. Industrial Crops and Products, 169, 113669. https://doi.org/10.1016/j.indcrop.2021.113669
  58. Prabhu, Y., Rao, K. V., Kumari, B. S., Kumar, V. S. S., & Pavani, T. (2015). Synthesis of Fe 3 O 4 nanoparticles and its antibacterial application. International Nano Letters, 5(2), 85-92. https://doi.org/10.1007/s40089-015-0141-z
  59. Rana, A. K., Frollini, E., & Thakur, V. K. (2021). Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization. International Journal of Biological Macromolecules, 182, 1554–1581. https://doi.org/10.1016/j.ijbiomac.2021.05.119
  60. Rana, A. K., Gupta, V. K., Saini, A. K., Voicu, S. I., Abdellattifaand, M. H., & Thakur, V. K. (2021). Water desalination using nanocelluloses/cellulose derivatives based membranes for sustainable future. Desalination, 520, 115359. https://doi.org/10.1016/j.desal.2021.115359
  61. Rocha-Santos, T. A. P. (2014). Sensors and biosensors based on magnetic nanoparticles. TrAC Trends in Analytical Chemistry, 62, 28-36. https://doi.org/10.1016/j.trac.2014.06.016
  62. Saville, S. L., Woodward, R. C., House, M. J., Tokarev, A., Hammers, J., Qi, B.,….& Mefford, O. T. (2013). The effect of magnetically induced linear aggregates on proton transverse relaxation rates of aqueous suspensions of polymer coated magnetic nanoparticles. Nanoscale, 5(5), 2152-2163. https://doi.org/10.1039/C3NR32979H
  63. Shankaran, D. R. (2018). Chapter 14 - Cellulose Nanocrystals for Health Care Applications. In S. Mohan Bhagyaraj, O. S. Oluwafemi, N. Kalarikkal, & S. Thomas (Eds.), Applications of Nanomaterials (pp. 415-459). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101971-9.00015-6
  64. Shen, R., Xue, S., Xu, Y., Liu, Q., Feng, Z., Ren, H.,….& Kong, F. (2020). Research Progress and Development Demand of Nanocellulose Reinforced Polymer Composites. Polymers, 12(9), 2113. https://doi.org/10.3390/polym12092113
  65. Singla, R., Abidi, S. M., Dar, A. I., & Acharya, A. (2019). Inhibition of glycation-induced aggregation of human serum albumin by organic–inorganic hybrid nanocomposites of Iron oxide-functionalized Nanocellulose. ACS omega, 4(12), 14805-14819. https://doi.org/10.1021/acsomega.9b01392
  66. Singh, P., Sharma, K., Hasija, V., Sharma, V., Sharma, S., Raizada, P., Singh, M., Saini, A. K., Hosseini-Bandegharaei, A., & Thakur, V. K. (2019). Systematic review on applicability of magnetic iron oxides–integrated photocatalysts for degradation of organic pollutants in water. Materials Today Chemistry, 14, 100186. https://doi.org/10.1016/j.mtchem.2019.08.005
  67. Sonawane, G. H., Patil, S. P., & Sonawane, S. H. (2018). Chapter 1 - Nanocomposites and Its Applications. In S. Mohan Bhagyaraj, O. S. Oluwafemi, N. Kalarikkal, & S. Thomas (Eds.), Applications of Nanomaterials (pp. 1-22). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101971-9.00001-6
  68. Sood, A., Arora, V., Kumari, S., Sarkar, A., Kumaran, S. S., Chaturvedi, S., Jain, T. K., & Agrawal, G. (2021). Imaging application and radiosensitivity enhancement of pectin decorated multifunctional magnetic nanoparticles in cancer therapy. International Journal of Biological Macromolecules, 189, 443-454. https://doi.org/10.1016/j.ijbiomac.2021.08.124
  69. Sood, A., Arora, V., Shah, J., Kotnala, R. K., & Jain, T. K. (2016). Ascorbic acid-mediated synthesis and characterisation of iron oxide/gold core–shell nanoparticles. Journal of Experimental Nanoscience, 11(5), 370-382. https://doi.org/10.1080/17458080.2015.1066514
  70. Sood, A., Arora, V., Shah, J., Kotnala, R. K., & Jain, T. K. (2017). Multifunctional gold coated iron oxide core-shell nanoparticles stabilised using thiolated sodium alginate for biomedical applications. Mater Sci Eng C Mater Biol Appl, 80, 274-281. https://doi.org/10.1016/j.msec.2017.05.079
  71. Sood, A., Dev, A., Sardoiwala, M. N., Choudhury, S. R., Chaturvedi, S., Mishra, A. K., & Karmakar, S. (2021). Alpha-ketoglutarate decorated iron oxide-gold core-shell nanoparticles for active mitochondrial targeting and radiosensitisation enhancement in hepatocellular carcinoma. Materials Science and Engineering: C, 129, 112394. https://doi.org/10.1016/j.msec.2021.112394
  72. Supramaniam, J., Adnan, R., Kaus, N. H. M., & Bushra, R. (2018). Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system. International journal of biological macromolecules, 118, 640-648. https://doi.org/10.1016/j.ijbiomac.2018.06.043
  73. Sureshkumar, M., Siswanto, D. Y., & Lee, C.-K. (2010). Magnetic anti-microbial nanocomposite based on bacterial cellulose and silver nanoparticles. Journal of Materials Chemistry, 20(33), 6948-6955. https://doi.org/10.1039/C0JM00565G
  74. Tade, R. S., More, M. P., Chatap, V. K., Patil, P. O., & Deshmukh, P. K. (2018). Fabrication and in vitro drug release characteristics of magnetic nanocellulose fiber composites for efficient delivery of nystatin. Materials Research Express, 5(11), 116102. https://doi.org/10.1088/2053-1591/aadd2b
  75. Thakur, S., Verma, A., Kumar, V., Jin Yang, X., Krishnamurthy, S., Coulon, F., & Thakur, V. K. (2022). Cellulosic biomass-based sustainable hydrogels for wastewater remediation: Chemistry and prospective. Fuel, 309, 122114. https://doi.org/10.1016/j.fuel.2021.122114
  76. Thakur, V. K., & Thakur, M. K. (2015). Recent advances in green hydrogels from lignin: A review. International Journal of Biological Macromolecules, 72, 834–847. https://doi.org/10.1016/j.ijbiomac.2014.09.044
  77. Thakur, V. K., & Voicu, S. I. (2016). Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydrate Polymers, 146, 148–165. https://doi.org/10.1016/j.carbpol.2016.03.030
  78. Torgbo, S., & Sukyai, P. (2019). Fabrication of microporous bacterial cellulose embedded with magnetite and hydroxyapatite nanocomposite scaffold for bone tissue engineering. Materials Chemistry and Physics, 237, 121868. https://doi.org/10.1016/j.matchemphys.2019.121868
  79. Torkashvand, N., & Sarlak, N. (2019). Fabrication of a dual T1 and T2 contrast agent for magnetic resonance imaging using cellulose nanocrystals/Fe3O4 nanocomposite. European Polymer Journal, 118, 128-136. https://doi.org/10.1016/j.eurpolymj.2019.05.048
  80. Trache, D., Hussin, M. H., Haafiz, M. M., & Thakur, V. K. (2017). Recent progress in cellulose nanocrystals: sources and production. Nanoscale, 9(5), 1763-1786. https://doi.org/10.1039/C6NR09494E
  81. Vangijzegem, T., Stanicki, D., & Laurent, S. (2019). Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert opinion on drug delivery, 16(1), 69-78. https://doi.org/10.1080/17425247.2019.1554647
  82. Veiseh, O., Gunn, J. W., & Zhang, M. (2010). Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev, 62(3), 284-304. https://doi.org/10.1016/j.addr.2009.11.002
  83. Verma, P., Kumar, A., Chauhan, S. S., Verma, M., Malik, R. S., & Choudhary, V. (2018). Industrially viable technique for the preparation of HDPE/fly ash composites at high loading: Thermal, mechanical, and rheological interpretations. Journal of Applied Polymer Science, 135(11), 459951. https://doi.org/10.1002/app.45995
  84. Wang, E. C., & Wang, A. Z. (2014). Nanoparticles and their applications in cell and molecular biology. Integrative biology : quantitative biosciences from nano to macro, 6(1), 9-26. https://doi.org/10.1039/c3ib40165k
  85. Wang, Y., Miao, Y., Li, G., Su, M., Chen, X., Zhang, H.,….& Fan, H. (2020). Engineering ferrite nanoparticles with enhanced magnetic response for advanced biomedical applications. Materials Today Advances, 8, 100119. https://doi.org/10.1016/j.mtadv.2020.100119
  86. Wu, M., & Huang, S. (2017). Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Molecular and clinical oncology, 7(5), 738-746. https://doi.org/10.3892/mco.2017.1399
  87. Zielińska, D., Rydzkowski, T., Thakur, V. K., & Borysiak, S. (2021). Enzymatic engineering of nanometric cellulose for sustainable polypropylene nanocomposites. Industrial Crops and Products, 161, 113188. https://doi.org/10.1016/j.indcrop.2020.113188
  88. Zhang, J., Feng, X., Wang, J., Fang, G., Liu, J., & Wang, S. (2020). Nano-crystalline cellulose-coated magnetic nanoparticles for affinity adsorption of glycoproteins. Analyst, 145(9), 3407-3413. https://doi.org/10.1039/D0AN00442A
  89. Zhang, L.-K., Du, S., Wang, X., Jiao, Y., Yin, L., Zhang, Y., & Guan, Y.-Q. (2019). Bacterial cellulose based composites enhanced transdermal drug targeting for breast cancer treatment. Chemical Engineering Journal, 370, 749-759. https://doi.org/10.1016/j.cej.2019.03.216
  90. Zhang, X., Qian, J., & Pan, B. (2016). Fabrication of Novel Magnetic Nanoparticles of Multifunctionality for Water Decontamination. Environmental Science & Technology, 50(2), 881-889. https://doi.org/10.1021/acs.est.5b04539
  91. Zhu, K., Ju, Y., Xu, J., Yang, Z., Gao, S., & Hou, Y. (2018). Magnetic Nanomaterials: Chemical Design, Synthesis, and Potential Applications. Accounts of Chemical Research, 51(2), 404-413. https://doi.org/10.1021/acs.accounts.7b00407

How to Cite

Potential of magnetic nano cellulose in biomedical applications: Recent Advances . (2021). Biomaterials and Polymers Horizon, 1(1), 32-47. https://doi.org/10.37819/bph.001.01.0133

How to Cite

Potential of magnetic nano cellulose in biomedical applications: Recent Advances . (2021). Biomaterials and Polymers Horizon, 1(1), 32-47. https://doi.org/10.37819/bph.001.01.0133

HTML
1440

Total
583

Share

Downloads

Article Details

Most Read This Month

License

Copyright (c) 2021 Anuj Kumar, Ankur Sood, Sung Soo Han

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.