Potential of magnetic nano cellulose in biomedical applications: Recent Advances
Abstract
Biopolymers have attracted considerable attention in various biomedical applications. Among them, cellulose as sustainable and renewable biomass has shown potential efficacy. With the advancement in nanotechnology, a wide range of nanostructured materials have surfaced with the potential to offer substantial biomedical applications. . The progress of cellulose at the nanoscale regime (nanocelluloses) with diverse forms like cellulose nanocrystals, nanofibres and bacterial nanocellulose) has imparted remarkable properties like high aspect-ratio and high mechanical strength, and biocompatibility. The amalgamation of nanocellulose together with magnetic nanoparticles (MNC) could be explored for a synergistic effect. In this review, a brief introduction of nano cellulose , magnetic nanoparticles and the synergistic effect of MNC is described. Further, the review sheds light on the recent studies based on MNCs with their potential in the biomedical area. Finally, the review is concluded by citing the remarkable value of MNC with their futuristic applications in other fields like friction layers for triboelectric nanogenerator (TENG), energy production, hydrogen splitting, and wearable electronics.
References
- Amiralian, N., Mustapic, M., Hossain, M. S. A., Wang, C., Konarova, M., Tang, J.,….& Rowan, A. (2020). Magnetic nanocellulose: A potential material for removal of dye from water. Journal of Hazardous Materials, 394, 122571. https://doi.org/10.1016/j.jhazmat.2020.122571
- Anderson, S. D., Gwenin, V. V., & Gwenin, C. D. (2019). Magnetic Functionalized Nanoparticles for Biomedical, Drug Delivery and Imaging Applications. Nanoscale Research Letters, 14(1), 188. https://doi.org/10.1186/s11671-019-3019-6
- Anirudhan, T., & Rejeena, S. (2013). Poly (methacrylic acid-co-vinyl sulfonic acid)-grafted-magnetite/nanocellulose superabsorbent composite for the selective recovery and separation of immunoglobulin from aqueous solutions. Separation and Purification Technology, 119, 82-93. https://doi.org/10.1016/j.seppur.2013.08.019
- Anirudhan, T. S., & Rejeena, S. R. (2014). Aminated β-cyclodextrin-modified-carboxylated magnetic cobalt/nanocellulose composite for tumor-targeted gene delivery. Journal of Applied Chemistry, 2014. http://dx.doi.org/10.1155/2014/184153
- Arias, S. L., Shetty, A., Devorkin, J., & Allain, J.-P. (2018). Magnetic targeting of smooth muscle cells in vitro using a magnetic bacterial cellulose to improve cell retention in tissue-engineering vascular grafts. Acta biomaterialia, 77, 172-181. https://doi.org/10.1016/j.actbio.2018.07.013
- Arias, S. L., Shetty, A. R., Senpan, A., Echeverry-Rendón, M., Reece, L. M., & Allain, J. P. (2016). Fabrication of a functionalised magnetic bacterial nanocellulose with iron oxide nanoparticles. Journal of visualised experiments: JoVE (111). https://dx.doi.org/10.3791%2F52951
- Arora, V., Sood, A., Kumari, S., Kumaran, S. S., & Jain, T. K. (2020). Hydrophobically modified sodium alginate conjugated plasmonic magnetic nanocomposites for drug delivery & magnetic resonance imaging. Materials Today Communications, 25, 101470. https://doi.org/10.1016/j.mtcomm.2020.101470
- Arruebo, M., Fernández-Pacheco, R., Ibarra, M. R., & Santamaría, J. (2007). Magnetic nanoparticles for drug delivery. Nano Today, 2(3), 22-32. https://doi.org/10.1016/S1748-0132(07)70084-1
- Barhoum, A., Jeevanandam, J., Rastogi, A., Samyn, P., Boluk, Y., Dufresne, A.,….& Bechelany, M. (2020). Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale, 12(45), 22845-22890. https://doi.org/10.1039/D0NR04795C
- Barroso, A., Mestre, H., Ascenso, A., Simões, S., & Reis, C. (2020). Nanomaterials in wound healing: From material sciences to wound healing applications. Nano Select, 1(5), 443-460. https://doi.org/10.1002/nano.202000055
- Beluns, S., Gaidukovs, S., Platnieks, O., Gaidukova, G., Mierina, I., Grase, L., Starkova, O., Brazdausks, P., & Thakur, V. K. (2021). From Wood and Hemp Biomass Wastes to Sustainable Nanocellulose Foams. Industrial Crops and Products, 170, 113780. https://doi.org/10.1016/j.indcrop.2021.113780
- Cao, S.-L., Xu, H., Li, X.-H., Lou, W.-Y., & Zong, M.-H. (2015). Papain@ magnetic nanocrystalline cellulose nanobiocatalyst: a highly efficient biocatalyst for dipeptide biosynthesis in deep eutectic solvents. ACS Sustainable Chemistry & Engineering, 3(7), 1589-1599. https://doi.org/10.1021/acssuschemeng.5b00290
- Chaabane, L., Chahdoura, H., Mehdaoui, R., Snoussi, M., Beyou, E., Lahcini, M., & Baouab, M. H. V. (2020). Functionalisation of developed bacterial cellulose with magnetite nanoparticles for nanobiotechnology and nanomedicine applications. Carbohydrate Polymers, 247, 116707. https://doi.org/10.1016/j.carbpol.2020.116707
- De France, K. J., Hoare, T., & Cranston, E. D. (2017). Review of hydrogels and aerogels containing nanocellulose. Chemistry of Materials, 29(11), 4609-4631. https://doi.org/10.1021/acs.chemmater.7b00531
- Drozd, R., Szymańska, M., Rakoczy, R., Junka, A., Szymczyk, P., & Fijałkowski, K. (2019). Functionalized magnetic bacterial cellulose beads as carrier for Lecitase® Ultra immobilization. Applied biochemistry and biotechnology, 187(1), 176-193. https://doi.org/10.1007/s12010-018-2816-1
- Du, H., Liu, W., Zhang, M., Si, C., Zhang, X., & Li, B. (2019). Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydrate Polymers, 209, 130-144. https://doi.org/10.1016/j.carbpol.2019.01.020
- Dürr, S., Janko, C., Lyer, S., Tripal, P., Schwarz, M., Zaloga, J.,….& Alexiou, C. (2013). Magnetic nanoparticles for cancer therapy. Nanotechnology Reviews, 2(4), 395-409. https://doi.org/10.2174/157341308783591861
- Echeverry‐Rendon, M., Reece, L. M., Pastrana, F., Arias, S. L., Shetty, A. R., Pavón, J. J., & Allain, J. P. (2017). Bacterial Nanocellulose Magnetically Functionalized for Neuro‐Endovascular Treatment. Macromolecular bioscience, 17(6), 1600382. https://doi.org/10.1002/mabi.201600382
- El-Boubbou, K. (2018). Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery. Nanomedicine, 13(8), 929-952. https://doi.org/10.2217/nnm-2017-0320
- Fathi-Achachelouei, M., Knopf-Marques, H., Ribeiro da Silva, C. E., Barthès, J., Bat, E., Tezcaner, A., & Vrana, N. E. (2019). Use of Nanoparticles in Tissue Engineering and Regenerative Medicine [Review]. Frontiers in Bioengineering and Biotechnology, 7(113). https://doi.org/10.3389/fbioe.2019.00113
- Ferreira, F. V., Otoni, C. G., De France, K. J., Barud, H. S., Lona, L. M. F., Cranston, E. D., & Rojas, O. J. (2020). Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering. Materials Today, 37, 126-141. https://doi.org/10.1016/j.mattod.2020.03.003
- Galateanu, B., Bunea, M.-C., Stanescu, P., Vasile, E., Casarica, A., Iovu, H.,….& Costache, M. (2015). In vitro studies of bacterial cellulose and magnetic nanoparticles smart nanocomposites for efficient chronic wounds healing. Stem cells international, 2015. https://doi.org/10.1155/2015/195096
- Gennari, A., Mobayed, F. H., Da Rolt Nervis, B., Benvenutti, E. V., Nicolodi, S., da Silveira, N. d. P.,….& Volken de Souza, C. F. (2019). Immobilisation of β-galactosidases on magnetic nanocellulose: textural, morphological, magnetic, and catalytic properties. Biomacromolecules, 20(6), 2315-2326. https://doi.org/10.1021/acs.biomac.9b00285
- Gu, H., Xu, K., Xu, C., & Xu, B. (2006). Biofunctional magnetic nanoparticles for protein separation and pathogen detection [10.1039/B514130C]. Chemical Communications(9), 941-949. https://doi.org/10.1039/B514130C
- Gul, S., Khan, S. B., Rehman, I. U., Khan, M. A., & Khan, M. I. (2019). A Comprehensive Review of Magnetic Nanomaterials Modern Day Theranostics [Review]. Frontiers in Materials, 6(179). https://doi.org/10.3389/fmats.2019.00179
- Guo, J., Filpponen, I., Johansson, L.-S., Mohammadi, P., Latikka, M., Linder, M. B.,….& Rojas, O. J. (2017). Complexes of magnetic nanoparticles with cellulose nanocrystals as regenerable, highly efficient, and selective platform for protein separation. Biomacromolecules, 18(3), 898-905. https://doi.org/10.1021/acs.biomac.6b01778
- Haider, A., Haider, S., Kang, I.-K., Kumar, A., Kummara, M. R., Kamal, T., & Han, S. S. (2018). A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent. International Journal of Biological Macromolecules, 108, 455-461. https://doi.org/10.1016/j.ijbiomac.2017.12.022
- Heidarian, P., Kaynak, A., Paulino, M., Zolfagharian, A., Varley, R., & Kouzani, A. Z. (2021). Dynamic Nanocellulose Hydrogels: Recent Advancements and Future Outlook. Carbohydrate Polymers, 118357. https://doi.org/10.1016/j.carbpol.2021.118357
- Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme immobilisation: an update. Journal of chemical biology, 6(4), 185-205. https://doi.org/10.1007/s12154-013-0102-9
- Isogai, A. (2021). Emerging nanocellulose technologies: Recent developments. Advanced Materials, 33(28), 2000630. https://doi.org/10.1002/adma.202000630
- Jain, T. K., Richey, J., Strand, M., Leslie-Pelecky, D. L., Flask, C. A., & Labhasetwar, V. (2008). Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials, 29(29), 4012-4021. https://doi.org/10.1016/j.biomaterials.2008.07.004
- Kim, J. S., Kuk, E., Yu, K. N., Kim, J.-H., Park, S. J., Lee, H. J.,….& Cho, M.-H. (2007). Anti-microbial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95-101. https://doi.org/10.1016/j.nano.2006.12.001
- Klemm, F., Maas, R. R., Bowman, R. L., Kornete, M., Soukup, K., Nassiri, S.,….& Joyce, J. A. (2020). Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells. Cell, 181(7), 1643-1660.e1617. https://doi.org/10.1016/j.cell.2020.05.007
- Kumar, A., Negi, Y. S., Bhardwaj, N. K., & Choudhary, V. (2012). Synthesis and characterisation of methylcellulose/PVA based porous composite. Carbohydrate Polymers, 88(4), 1364-1372. https://doi.org/10.1016/j.carbpol.2012.02.019
- Kummara, M. R., Kumar, A., & Sung Soo, H. (2017). Development of antibacterial paper coated with sodium hyaluronate stabilised curcumin-Ag nanohybrid and chitosan via polyelectrolyte complexation for medical applications. Materials Research Express, 4(11), 115401. https://doi.org/10.1088/2053-1591/aa9551
- Lee, C.-K., & Au-Duong, A.-N. (2018). Enzyme Immobilisation on Nanoparticles: Recent Applications. In Emerging Areas in Bioengineering, 1st edn.; Chang, H. N., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 67–80. https://doi.org/10.1002/9783527803293.ch4
- Li, Y.-C. E. (2019). Sustainable Biomass Materials for Biomedical Applications. ACS Biomaterials Science & Engineering, 5(5), 2079-2092. https://doi.org/10.1021/acsbiomaterials.8b01634
- Li, Y.-Y., Wang, B., Ma, M.-G., & Wang, B. (2018). Review of recent development on preparation, properties, and applications of cellulose-based functional materials. International Journal of Polymer Science, 2018. https://doi.org/10.1155/2018/8973643
- Liu, S., Li, Z., Yu, B., Wang, S., Shen, Y., & Cong, H. (2020). Recent advances on protein separation and purification methods. Advances in Colloid and Interface Science, 284, 102254. https://doi.org/10.1016/j.cis.2020.102254
- Mahapatra, S. D., Mohapatra, P. C., Aria, A. I., Christie, G., Mishra, Y. K., Hofmann, S., & Thakur, V. K. (2021). Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials. Advanced Science, 8(17), 2100864. https://doi.org/10.1002/advs.202100864
- Matiiv, A. B., Trubitsina, N. P., Matveenko, A. G., Barbitoff, Y. A., Zhouravleva, G. A., & Bondarev, S. A. (2020). Amyloid and Amyloid-Like Aggregates: Diversity and the Term Crisis. Biochemistry (Moscow), 85(9), 1011-1034.
- Moniri, M., Moghaddam, A. B., Azizi, S., Rahim, R. A., Saad, W. Z., Navaderi, M.,….& Mohamad, R. (2018). Molecular study of wound healing after using biosynthesised BNC/Fe3O4 nanocomposites assisted with a bioinformatics approach. International journal of nanomedicine, 13, 2955. https://dx.doi.org/10.2147%2FIJN.S159637
- Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994. https://doi.org/10.1039/C0CS00108B
- Moosavi, S., Lai, C. W., Gan, S., Zamiri, G., Akbarzadeh Pivehzhani, O., & Johan, M. R. (2020). Application of Efficient Magnetic Particles and Activated Carbon for Dye Removal from Wastewater. ACS Omega, 5(33), 20684-20697. https://doi.org/10.1021/acsomega.0c01905
- Mosayebi, J., Kiyasatfar, M., & Laurent, S. (2017). Synthesis, Functionalisation, and Design of Magnetic Nanoparticles for Theranostic Applications. Advanced Healthcare Materials, 6(23), 1700306. https://doi.org/10.1002/adhm.201700306
- Nagai, H., & Kim, Y. H. (2017). Cancer prevention from the perspective of global cancer burden patterns. Journal of thoracic disease, 9(3), 448-451. https://dx.doi.org/10.21037%2Fjtd.2017.02.75
- Nasrollahzadeh, M., Issaabadi, Z., Sajjadi, M., Sajadi, S. M., & Atarod, M. (2019). Chapter 2 - Types of Nanostructures. In M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, Z. Issaabadi, & M. Atarod (Eds.), Interface Science and Technology (Vol. 28, pp. 29-80). Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00002-X
- Neibolts, N., Platnieks, O., Gaidukovs, S., Barkane, A., Thakur, V. K., Filipova, I., Mihai, G., Zelca, Z., Yamaguchi, K., & Enachescu, M. (2020). Needle-free electrospinning of nanofibrillated cellulose and graphene nanoplatelets based sustainable poly (butylene succinate) nanofibers. Materials Today Chemistry, 17, 100301. https://doi.org/10.1016/j.mtchem.2020.100301
- Niaounakis, M. (2015). Manufacture of Biocomposites. In M. Niaounakis (Ed.), Biopolymers: Processing and Products (pp. 411-430). William Andrew Publishing. Ning, P., Yang, G., Hu, L., Sun, J., Shi, L., Zhou, Y., Wang, Z., & Yang, J. (2021). Recent advances in the valorisation of plant biomass. Biotechnology for Biofuels, 14(1), 102. https://doi.org/10.1186/s13068-021-01949-3
- Nune, S. K., Gunda, P., Thallapally, P. K., Lin, Y.-Y., Forrest, M. L., & Berkland, C. J. (2009). Nanoparticles for biomedical imaging. Expert opinion on drug delivery, 6(11), 1175-1194. https://doi.org/10.1517/17425240903229031
- Nypelö, T., Rodriguez-Abreu, C., Rivas, J., Dickey, M. D., & Rojas, O. J. (2014). Magneto-responsive hybrid materials based on cellulose nanocrystals. Cellulose, 21(4), 2557-2566. https://doi.org/10.1007/s10570-014-0307-2
- Pastrana, H. F., Cooper, C. L., Alucozai, M., Reece, L. M., Avila, A. G., & Allain, J. P. (2016). Synthesis and in vitro safety assessment of magnetic bacterial cellulose with porcine aortic smooth muscle cells. Journal of Biomedical Materials Research Part A, 104(11), 2801-2809. https://doi.org/10.1002/jbm.a.35824
- Patil, T. V., Patel, D. K., Dutta, S. D., Ganguly, K., Santra, T. S., & Lim, K.-T. (2021). Nanocellulose, a versatile platform: From the delivery of active molecules to tissue engineering applications. Bioactive Materials. https://doi.org/10.1016/j.bioactmat.2021.07.006
- Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. d. P., Acosta-Torres, L. S.,….& Shin, H.-S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71. https://doi.org/10.1186/s12951-018-0392-8
- Pavón, J. J., Allain, J. P., Verma, D., Echeverry‐Rendón, M., Cooper, C. L., Reece, L. M., Shetty, A. R., & Tomar, V. (2019). In situ Study Unravels Bio‐Nanomechanical Behavior in a Magnetic Bacterial Nano‐cellulose (MBNC) Hydrogel for Neuro‐Endovascular Reconstruction. Macromolecular bioscience, 19(2), 1800225. https://doi.org/10.1002/mabi.201800225
- Platnieks, O., Gaidukovs, S., Barkane, A., Sereda, A., Gaidukova, G., Grase, L., Thakur, V. K., Filipova, I., Fridrihsone, V., Skute, M., & Laka, M. (2020). Bio-Based Poly(butylene succinate)/Microcrystalline Cellulose/Nanofibrillated Cellulose-Based Sustainable Polymer Composites: Thermo-Mechanical and Biodegradation Studies. Polymers, 12(7), 1472. https://doi.org/10.3390/polym12071472
- Platnieks, O., Sereda, A., Gaidukovs, S., Thakur, V. K., Barkane, A., Gaidukova, G., Filipova, I., Ogurcovs, A., & Fridrihsone, V. (2021). Adding value to poly (butylene succinate) and nanofibrillated cellulose-based sustainable nanocomposites by applying masterbatch process. Industrial Crops and Products, 169, 113669. https://doi.org/10.1016/j.indcrop.2021.113669
- Prabhu, Y., Rao, K. V., Kumari, B. S., Kumar, V. S. S., & Pavani, T. (2015). Synthesis of Fe 3 O 4 nanoparticles and its antibacterial application. International Nano Letters, 5(2), 85-92. https://doi.org/10.1007/s40089-015-0141-z
- Rana, A. K., Frollini, E., & Thakur, V. K. (2021). Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization. International Journal of Biological Macromolecules, 182, 1554–1581. https://doi.org/10.1016/j.ijbiomac.2021.05.119
- Rana, A. K., Gupta, V. K., Saini, A. K., Voicu, S. I., Abdellattifaand, M. H., & Thakur, V. K. (2021). Water desalination using nanocelluloses/cellulose derivatives based membranes for sustainable future. Desalination, 520, 115359. https://doi.org/10.1016/j.desal.2021.115359
- Rocha-Santos, T. A. P. (2014). Sensors and biosensors based on magnetic nanoparticles. TrAC Trends in Analytical Chemistry, 62, 28-36. https://doi.org/10.1016/j.trac.2014.06.016
- Saville, S. L., Woodward, R. C., House, M. J., Tokarev, A., Hammers, J., Qi, B.,….& Mefford, O. T. (2013). The effect of magnetically induced linear aggregates on proton transverse relaxation rates of aqueous suspensions of polymer coated magnetic nanoparticles. Nanoscale, 5(5), 2152-2163. https://doi.org/10.1039/C3NR32979H
- Shankaran, D. R. (2018). Chapter 14 - Cellulose Nanocrystals for Health Care Applications. In S. Mohan Bhagyaraj, O. S. Oluwafemi, N. Kalarikkal, & S. Thomas (Eds.), Applications of Nanomaterials (pp. 415-459). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101971-9.00015-6
- Shen, R., Xue, S., Xu, Y., Liu, Q., Feng, Z., Ren, H.,….& Kong, F. (2020). Research Progress and Development Demand of Nanocellulose Reinforced Polymer Composites. Polymers, 12(9), 2113. https://doi.org/10.3390/polym12092113
- Singla, R., Abidi, S. M., Dar, A. I., & Acharya, A. (2019). Inhibition of glycation-induced aggregation of human serum albumin by organic–inorganic hybrid nanocomposites of Iron oxide-functionalized Nanocellulose. ACS omega, 4(12), 14805-14819. https://doi.org/10.1021/acsomega.9b01392
- Singh, P., Sharma, K., Hasija, V., Sharma, V., Sharma, S., Raizada, P., Singh, M., Saini, A. K., Hosseini-Bandegharaei, A., & Thakur, V. K. (2019). Systematic review on applicability of magnetic iron oxides–integrated photocatalysts for degradation of organic pollutants in water. Materials Today Chemistry, 14, 100186. https://doi.org/10.1016/j.mtchem.2019.08.005
- Sonawane, G. H., Patil, S. P., & Sonawane, S. H. (2018). Chapter 1 - Nanocomposites and Its Applications. In S. Mohan Bhagyaraj, O. S. Oluwafemi, N. Kalarikkal, & S. Thomas (Eds.), Applications of Nanomaterials (pp. 1-22). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101971-9.00001-6
- Sood, A., Arora, V., Kumari, S., Sarkar, A., Kumaran, S. S., Chaturvedi, S., Jain, T. K., & Agrawal, G. (2021). Imaging application and radiosensitivity enhancement of pectin decorated multifunctional magnetic nanoparticles in cancer therapy. International Journal of Biological Macromolecules, 189, 443-454. https://doi.org/10.1016/j.ijbiomac.2021.08.124
- Sood, A., Arora, V., Shah, J., Kotnala, R. K., & Jain, T. K. (2016). Ascorbic acid-mediated synthesis and characterisation of iron oxide/gold core–shell nanoparticles. Journal of Experimental Nanoscience, 11(5), 370-382. https://doi.org/10.1080/17458080.2015.1066514
- Sood, A., Arora, V., Shah, J., Kotnala, R. K., & Jain, T. K. (2017). Multifunctional gold coated iron oxide core-shell nanoparticles stabilised using thiolated sodium alginate for biomedical applications. Mater Sci Eng C Mater Biol Appl, 80, 274-281. https://doi.org/10.1016/j.msec.2017.05.079
- Sood, A., Dev, A., Sardoiwala, M. N., Choudhury, S. R., Chaturvedi, S., Mishra, A. K., & Karmakar, S. (2021). Alpha-ketoglutarate decorated iron oxide-gold core-shell nanoparticles for active mitochondrial targeting and radiosensitisation enhancement in hepatocellular carcinoma. Materials Science and Engineering: C, 129, 112394. https://doi.org/10.1016/j.msec.2021.112394
- Supramaniam, J., Adnan, R., Kaus, N. H. M., & Bushra, R. (2018). Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system. International journal of biological macromolecules, 118, 640-648. https://doi.org/10.1016/j.ijbiomac.2018.06.043
- Sureshkumar, M., Siswanto, D. Y., & Lee, C.-K. (2010). Magnetic anti-microbial nanocomposite based on bacterial cellulose and silver nanoparticles. Journal of Materials Chemistry, 20(33), 6948-6955. https://doi.org/10.1039/C0JM00565G
- Tade, R. S., More, M. P., Chatap, V. K., Patil, P. O., & Deshmukh, P. K. (2018). Fabrication and in vitro drug release characteristics of magnetic nanocellulose fiber composites for efficient delivery of nystatin. Materials Research Express, 5(11), 116102. https://doi.org/10.1088/2053-1591/aadd2b
- Thakur, S., Verma, A., Kumar, V., Jin Yang, X., Krishnamurthy, S., Coulon, F., & Thakur, V. K. (2022). Cellulosic biomass-based sustainable hydrogels for wastewater remediation: Chemistry and prospective. Fuel, 309, 122114. https://doi.org/10.1016/j.fuel.2021.122114
- Thakur, V. K., & Thakur, M. K. (2015). Recent advances in green hydrogels from lignin: A review. International Journal of Biological Macromolecules, 72, 834–847. https://doi.org/10.1016/j.ijbiomac.2014.09.044
- Thakur, V. K., & Voicu, S. I. (2016). Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydrate Polymers, 146, 148–165. https://doi.org/10.1016/j.carbpol.2016.03.030
- Torgbo, S., & Sukyai, P. (2019). Fabrication of microporous bacterial cellulose embedded with magnetite and hydroxyapatite nanocomposite scaffold for bone tissue engineering. Materials Chemistry and Physics, 237, 121868. https://doi.org/10.1016/j.matchemphys.2019.121868
- Torkashvand, N., & Sarlak, N. (2019). Fabrication of a dual T1 and T2 contrast agent for magnetic resonance imaging using cellulose nanocrystals/Fe3O4 nanocomposite. European Polymer Journal, 118, 128-136. https://doi.org/10.1016/j.eurpolymj.2019.05.048
- Trache, D., Hussin, M. H., Haafiz, M. M., & Thakur, V. K. (2017). Recent progress in cellulose nanocrystals: sources and production. Nanoscale, 9(5), 1763-1786. https://doi.org/10.1039/C6NR09494E
- Vangijzegem, T., Stanicki, D., & Laurent, S. (2019). Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert opinion on drug delivery, 16(1), 69-78. https://doi.org/10.1080/17425247.2019.1554647
- Veiseh, O., Gunn, J. W., & Zhang, M. (2010). Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev, 62(3), 284-304. https://doi.org/10.1016/j.addr.2009.11.002
- Verma, P., Kumar, A., Chauhan, S. S., Verma, M., Malik, R. S., & Choudhary, V. (2018). Industrially viable technique for the preparation of HDPE/fly ash composites at high loading: Thermal, mechanical, and rheological interpretations. Journal of Applied Polymer Science, 135(11), 459951. https://doi.org/10.1002/app.45995
- Wang, E. C., & Wang, A. Z. (2014). Nanoparticles and their applications in cell and molecular biology. Integrative biology : quantitative biosciences from nano to macro, 6(1), 9-26. https://doi.org/10.1039/c3ib40165k
- Wang, Y., Miao, Y., Li, G., Su, M., Chen, X., Zhang, H.,….& Fan, H. (2020). Engineering ferrite nanoparticles with enhanced magnetic response for advanced biomedical applications. Materials Today Advances, 8, 100119. https://doi.org/10.1016/j.mtadv.2020.100119
- Wu, M., & Huang, S. (2017). Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Molecular and clinical oncology, 7(5), 738-746. https://doi.org/10.3892/mco.2017.1399
- Zielińska, D., Rydzkowski, T., Thakur, V. K., & Borysiak, S. (2021). Enzymatic engineering of nanometric cellulose for sustainable polypropylene nanocomposites. Industrial Crops and Products, 161, 113188. https://doi.org/10.1016/j.indcrop.2020.113188
- Zhang, J., Feng, X., Wang, J., Fang, G., Liu, J., & Wang, S. (2020). Nano-crystalline cellulose-coated magnetic nanoparticles for affinity adsorption of glycoproteins. Analyst, 145(9), 3407-3413. https://doi.org/10.1039/D0AN00442A
- Zhang, L.-K., Du, S., Wang, X., Jiao, Y., Yin, L., Zhang, Y., & Guan, Y.-Q. (2019). Bacterial cellulose based composites enhanced transdermal drug targeting for breast cancer treatment. Chemical Engineering Journal, 370, 749-759. https://doi.org/10.1016/j.cej.2019.03.216
- Zhang, X., Qian, J., & Pan, B. (2016). Fabrication of Novel Magnetic Nanoparticles of Multifunctionality for Water Decontamination. Environmental Science & Technology, 50(2), 881-889. https://doi.org/10.1021/acs.est.5b04539
- Zhu, K., Ju, Y., Xu, J., Yang, Z., Gao, S., & Hou, Y. (2018). Magnetic Nanomaterials: Chemical Design, Synthesis, and Potential Applications. Accounts of Chemical Research, 51(2), 404-413. https://doi.org/10.1021/acs.accounts.7b00407
How to Cite
How to Cite
Downloads
Article Details
Most Read This Month
License
Copyright (c) 2021 Anuj Kumar, Ankur Sood, Sung Soo Han
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.