Skip to main content Skip to main navigation menu Skip to site footer

Spiroplasma burmanica sp. nov. (Spiroplasmataceae: Mollicutes) from a Fossil Plant Louse (Psylloidea: Sternorrhyncha) in mid-Cretaceous Burmese Amber

Abstract

A new species of spiroplasmid, Spiroplasma burmanica sp. nov. (Mollicutes: Entomoplasmatales: Spiroplasmataceae) is described from the body cavity of a fossil plant louse (Psylloidea: Sternorrhyncha) in Burmese amber.  The new species is pleomorphic with body shapes varying from oval to helical.  The majority of the helical cells occur in the head, thorax (including leg cavities) and abdomen of the fossil psyllid.   The association between S. burmanica and the psyllid is considered to be a case of symbiosis, similar to extant relationships.  This discovery of the first fossil spiroplasmid shows that psyllids carried these microorganisms some 100 million years ago.

Section

References

  1. Bressan, A. (2014). Emergence and evolution of Arsenophonus bacteria as insect-vectored plant pathogens. Infection, Genetics and Evolution, 22,81-90. https://doi.org/10.1016/j.meegid.2014.01.004
  2. Burckhardt, D., & Poinar, G. (2020). The first jumping plant-louse from mid-Cretaceous Burmese amber and its impact on the classification of Mesozoic psylloids (Hemiptera: Sternorrhyncha: Psylloidea sl). Cretaceous Research, 106, 104240. https://doi.org/10.1016/j.cretres.2019.104240
  3. Chang, K. P., & Musgrave, A. J. (1969). Histochemistry and ultrastructure of the mycetome and its ‘symbiotes’ in the pear psylla, Psylla pyricola Foerster (Homoptera). Tissue and Cell, 1(4), 597-606. https://doi.org/10.1016/S0040-8166(69)80034-0
  4. Cruickshank, D. & Ko, K. (2003). Geology of an amber locality in the Hukawng Valley, northern Myanmar. Journal of Asian Earth Sciences 21, 441–455. https://doi.org/10.1016/S1367-9120(02)00044-5
  5. Dale, C. & Maudlin, I. (1999). Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. International journal of Systematic Bacteriology 49, 267-275. https://doi.org/10.1099/00207713-49-1-267
  6. Fletcher, J., Melcher, U., & Wayadande, A. (2006). The Phytopathogenic spiroplasmas. In M. Dworkin, (Ed.), The Prokaryotes, (3rd ed., vol. 4.) (pp. 905-950). New York, USA: Springer.
  7. Gasparich, G. E. (2010). Spiroplasmas and phytoplasmas: microbes associated with plant hosts. Biologicals, 38(2), 193-203. https://doi.org/10.1016/j.biologicals.2009.11.007
  8. Gullan, P.J. & Martin, J. H. (2003). Sternorrhyncha (Jumping plant lice, whiteflies, aphids and scale insects). In V.H. Resh & R. T. Cardé (eds), Encyclopedia of Insects (pp. 1079-1089). New York, USA: Academic Press.
  9. Hodkinson, I. D. (2009). Life cycle variation and adaptation in jumping plant lice (Insecta: Hemiptera: Psylloidea): a global synthesis. Journal of natural History, 43(1-2), 65-179. https://doi.org/10.1080/00222930802354167
  10. Kudo, R. (1966). Protozoology. (5th ed). Charles C. Thomas, Springfield, Illinois.
  11. Marinkelle, C. J. (1982). Developmental stages of Trypanosoma cruzi-like flagellates in Cavernicola pilosa. Revista de biologia tropical, 30(2), 107-111.
  12. Meloni, G.A., Bertoloni, G., Busolo, F. & Conventi, L. (1980). Colony morphology, ultrastructure and morphogenesis in Mycoplasma hominis, Acholeplasma laidlawii and Ureaplasma urealyticum. Journal of General Microbiology 116, 435-443. https://doi.org/10.1099/00221287-116-2-435
  13. Musgrave, A. J. (1964). Insect mycetomes. The Canadian Entomologist, 96, 377-389.
  14. Nadarasah, G., & Stavrinides, J. (2011). Insects as alternative hosts for phytopathogenic bacteria. FEMS microbiology reviews, 35(3), 555-575. https://doi.org/10.1111/j.1574-6976.2011.00264.x
  15. Nakabachi, A., Malenovsky, I., Gjonov, L., & Hirose, Y. (2020). 16S rRNA sequencing detected Profftella, Liberibacter, Wolbachia, and Diplorickettsia from relatives of the Asian citrus psyllid. Invertebrate microbiology 80, 410-422. https://doi.org/10.1007/s00248-020-01491-z
  16. Pinnock, D. E., & Hess, R. T. (1974). The occurrence of intracellular rickettsia-like organisms in the tsetse flies, Glossina morsitans, G. fuscipes, G. brevi-palpis and G. pallidipes. Acta tropica, 31(1), 70-79.
  17. Poinar, G.O. Jr. & Thomas, G.M. (1984). Laboratory Guide to Insect Pathogens and Parasites. New York, USA: Plenum Press.
  18. Poinar, Jr., G. O. & Brown, A. E. (2020). A new genus and species of the family Dinglidae (Hemiptera: Sternorrhyncha) in Burmese amber. Neues Jahrbuch für Geologie und Paläontologie, 298, 319-129.
  19. Profft, J. (1936). Beiträge zur symbiose der aphiden und psylliden. Zeitschrift für Morphologie und Okologie der Tiere 32, 286-326.
  20. Puttamuk, T., Zhang, S., Duan, Y., Jantasorn, A., &Thaveechai, N. (2014). Effect of chemical treatments on ‘Candidatus Liberibacter asiaticus’ infected pomelo (Citrus maxima). Crop Protection 65, 114-121. https://doi.org/10.1016/j.cropro.2014.07.018
  21. Razin, S., & Freundt, E.A. (1984). Mycoplasmataceae Freundt 1955. In N.R. Krieg, & J.G. Holt (Eds.), Bergey’s Manual of Systematic Bacteriology (vol. 1) (pp. 742-775). Baltimore: Williams and Wilkins.
  22. Roubaud, E. (1919). Les particularités de la nutrition et la vie symbiotique chez les mouches tsétsés. Annales de l’ Institut Pasteur, 33, 489-536.
  23. Schaub, G. A. (1994). Pathogenicity of trypanosomatids on insects. Parasitology Today, 10(12), 463-468. https://doi.org/10.1016/0169-4758(94)90155-4
  24. Wallace, F. G. (1966). The trypanosomatid parasites of insects and arachnids. Experimental parasitology, 18(1), 124-193. https://doi.org/10.1016/0014-4894(66)90015-4
  25. Weiss, E., & Moulder, J.W. (1984). Order Rickettsiales Gieszczkiewicz 1939. In N.R. Krieg & J.G. Holt (Eds.), Bergey’s Manual of Systematic Bacteriology (pp. 687-729). Baltimore: Williams and Wilkins.
  26. Whitcomb, R. F., & Tully, J. G. (1982). Taxonomy and identification of spiroplasmas. Reviews of infectious diseases, 4(Supplement_1), S148-S153. https://doi.org/10.1093/clinids/4.Supplement_1.S148
  27. Whitcomb, R. F., & Tully, J. G. (1984). Family Spiroplasmataceae. In N.R. Krieg (ed), Bergey’s Manual of Systematic Bacteriology (vol. 1) (pp. 781-787). Baltimore: Williams & Wilkins.
  28. Wigglesworth, V. B. (1967). The Principles of Insect Physiology. (6th ed). London, UK: Methuen & Co., Ltd.
  29. Williamson, D. L., Sakaguchi, B., Hackett, K. J., Whitcomb, R. F., Tully, J. G., Carle, P., ... & Henegar, R. B. (1999). Spiroplasma poulsonii sp. nov., a new species associated with male-lethality in Drosophila willistoni, a neotropical species of fruit fly. International Journal of Systematic and Evolutionary Microbiology, 49(2), 611-618. https://doi.org/10.1099/00207713-49-2-611
  30. Xing, L., & Qiu, L. (2020). Zircon UPb age constraints on the mid-Cretaceous Hkamti amber biota in northern Myanmar. Palaeogeography, Palaeoclimatology, Palaeoecology, 558, 109960. https://doi.org/10.1016/j.palaeo.2020.109960

How to Cite

Spiroplasma burmanica sp. nov. (Spiroplasmataceae: Mollicutes) from a Fossil Plant Louse (Psylloidea: Sternorrhyncha) in mid-Cretaceous Burmese Amber. (2020). Biosis: Biological Systems, 1(4), 157-163. https://doi.org/10.37819/biosis.001.04.0071

How to Cite

Spiroplasma burmanica sp. nov. (Spiroplasmataceae: Mollicutes) from a Fossil Plant Louse (Psylloidea: Sternorrhyncha) in mid-Cretaceous Burmese Amber. (2020). Biosis: Biological Systems, 1(4), 157-163. https://doi.org/10.37819/biosis.001.04.0071

HTML
209

Total
142

Share

Search Panel

Downloads

Article Details

Most Read This Month

License