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Abstract 

The incorporation of metal oxide nanoparticles into magnesium oxide (MgO) powder enhances its supercapacitor 

performance. This study investigates the influence of cooper oxide nanoparticles (CuO-NPs) incorporated into 

magnesium oxide (MgO) powder on the electrochemical performance of supercapacitors.  Magnesium oxide (MgO), 

Copper Oxide nanoparticles (CuO-NPs), and their composite (MgO/CuO) were synthesized and evaluated under 

both three- and two-electrode configurations. Structural, morphological, and electrochemical characterizations were 

performed to assess the effect of CuO addition. X-ray diffraction (XRD) and scanning electron microscopy (SEM) 

confirmed the successful integration of CuO into the MgO matrix, accompanied by notable changes in crystallinity 

and particle morphology. Electrochemical performance was evaluated using cyclic voltammetry (CV), galvanostatic 

charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The MgO/CuO composite 

demonstrated a markedly enhanced specific capacitance of 444.4 F/g at 2 A/g in a three-electrode system, 

significantly higher than individual MgO and CuO. The composite retained 96.8% capacitance after 5000 GCD 

cycles, showing excellent cyclic stability. EIS results revealed low series resistance, fast ion diffusion, and improved 

charge-transfer kinetics.  The enhanced performance is attributed to the synergistic interaction between MgO and 

CuO, which improves surface activity, electron transport, and structural stability, thereby establishing MgO/CuO as 

a promising, cost-effective, and environmentally benign electrode material for next-generation high-performance 

supercapacitors. 
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1. Introduction 

 Energy storage technologies such as batteries and conventional capacitors are limited by low power density, 

restricted capacitance, slow-discharge rates, and environmental concerns (Naderi et al., 2020; Sohouli et al., 2023; 

Rajkumar et al., 2022; Al-nayili et al.,2023; Portia et al., 2020; Xavier et al., 2020).  

 Supercapacitors (SCs) address several of these challenges due to their high-power density, rapid charge-discharge 

capability, long cycle life, and stability. They have been widely implemented in electric vehicles, renewable energy 

systems, portable electronics, and industrial power backup applications (Conway et al., 2013; Alex et al., 2021; 

Angelin et al., 2022; Al-Abidy et al., 2023).  

 Electrochemical supercapacitors operate primarily through two mechanisms: electric double-layer capacitance 

(EDLCs), which depends on ion adsorption at the electrode-electrolyte interface, and pseudocapacitance, which 

relies on fast, reversible faradaic reactions (Chun et al., 2015; Al-Nayili et al., 2021). Carbon-based materials 

(Kumar et al.,2024; Kumar et al., 2023) typically utilize high surface area, porous carbon materials such as activated 

carbon, carbon nanotubes, and graphene, which dominate EDLC applications (Cao et al., 2019; Zheng et al., 2014; 

Korkmaz et al., 2020; Ajel et al., 2022; Alwan et al., 2022). Conversely, pseudocapacitors rely on redox reactions or 

electron transfer (faradaic reactions) for charge storage, often incorporating conductive polymers, metals, and 

transition metal oxides (Mohammadnia et al., 2020; Yue et al., 2022).  

 Despite the potential of SCs, challenges remain in their widespread commercial adoption, particularly in the case of 

pure carbon nanomaterials. The low capacitance and energy density of these materials have hindered their extensive 

use in energy storage applications. To overcome these limitations, researchers are exploring various strategies, 

including the development of novel electrolytes and the optimization of electrode materials and structures, such as 

hybrid systems that combine the advantages of both EDLCs and pseudocapacitors (Chandra Sekhar et al., 2022; 

Yadav, 2020; Mangiri et al., 2025). In recognition of their intriguing electrochemical characteristics (Kumar et al., 

2025; Bogale et al., 2025), metal oxides have been synthesized and studied using a variety of synthetic techniques 

for electrochemical capacitors (Yadav, 2020; Chmiola et al., 2006; Balakrishnan et al., 2014; Sharma et al., 2025). 

Some of these materials are considered feasible due to their multiple oxidation states and double-layer charge 

storage capabilities, making them suitable alternatives to carbon-based materials for supercapacitor applications 

(Balakrishna et al., 2014; Chmiola et al., 2006).  

 Recent studies have focused on significant advancements in emerging electrode materials for high-performance 

energy storage. Mangiri et al. (2025) systematically analyzed M5X4 MXenes, emphasizing their unique 

stoichiometry, exceptional electrical conductivity, and adaptable surface chemistry, which enable efficient ion 

intercalation and pseudocapacitive behavior for enhanced energy and power densities. Khan et al. (2025) focused on 

transition metal dichalcogenides (TMDCs), noting their tunable morphology, high surface area, and strong redox 

activity that position them as promising candidates for next-generation supercapacitors. Ramachandran et al. (2025) 

reviewed recent progress in black phosphorus, underscoring its favorable electrochemical properties and potential 

integration into future sustainable energy-storage technologies. At present, research is also progressing to find 

alternatives to costly and toxic materials that possess lower specific surface areas and limited porosity (Balakrishnan 
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et al., 2014). Electrode materials prepared from transition metal oxides offer advantages such as environmental 

friendliness and easy availability. Several metal oxides, such as RuO2, NiOx, IrO2, Co3O4, CoO, and MgO2 have 

been found suitable for achieving higher capacitance and stability (Bi et al., 2010; Yoon et al., 2001; Kim et al., 

2013; Chen et al., 2011; Wang et al., 2014; Zhang et al., 2014; Rajeshwari et al., 2009).  However, the widespread 

use of RuO2-despite its exceptional reversibility, high specific capacitance, and long-life cycle, is limited due to its 

high cost, toxicity, low specific surface area, restricted porosity, and the use of toxic precursors (Balakrishnan et al., 

2014; Yoon et al., 2001). Therefore, researchers are focusing on cost-effective, environmentally benign, nontoxic 

and readily accessible alternatives (Kumar et al., 2025; Verma et al., 2025; Devi et al., 2024). Copper oxide (CuO) 

offers advantages such as abundance, ease of synthesis, low toxicity, and favorable electrocatalytic properties, along 

with diverse morphologies (Zaidan et al., 2019; Gbair et al., 2022). Shinde et al. (2016) reported the application of 

CuO in the fabrication of high-performance electrode material for supercapacitors. In addition, considerable research 

has demonstrated that doping magnesium oxide (MgO) with suitable additives can significantly improve 

supercapacitor performance.  

Our proposed work focuses on developing a cost-effective MgO-based electrode material with significantly 

improved supercapacitive performance through the integration of CuO nanoparticles. The CuO-NPs were 

synthesized through a simple scalable method, and their incorporation into MgO enabled enhanced charge storage 

capability, improved electrical conductivity, and superior physicochemical characteristics. The MgO/CuO hybrid 

material was thoroughly characterized and demonstrated excellent electrochemical efficiency, validating the 

effectiveness of metal-metal oxide hybridization strategies reported in recent literature (Thakur & Thakur, 2025; 

Balkrishna et al., 2024; Kumar et al., 2024; Verma et al., 2024).   

 

 

Figure 1. Schematic representation of the synthesis process of the CuO/MgO composite.  

 

2. Materials and Method 
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The chemicals Cu (NO3)2.3H2O (copper nitrate), NaOH (sodium hydroxide), C2H5OH (ethanol), MgO (magnesium 

oxide) powder, carbon black, NMP (N-Methyl-2-pyrrolidone), and PVDF (polyvinylidene fluoride) were of AR 

grade and used without further purification (Table 1).  

To obtain the precipitate of CuO-NPs, a 0.1M solution of Cu(NO3)2.3H2O was stirred on a magnetic stirrer for 30 

minutes, followed by the dropwise addition of 0.1 M NaOH. This mixture was stirred for an additional 45 minutes. 

The CuO-NPs were separated using centrifugation, washed with a 5 % ethanolic solution, and dried at 750C °C for 5 

hours in a hot air oven. The dried CuO-NPs were then calcined at 3000C for 3 hours in the furnace.  

For the synthesis of the MgO/CuO composite, 100 mg of CuO-NPs was dispersed in 100 mL of double-distilled 

water (DDW) and stirred for 2 hours, followed by 3 hours of sonication. MgO precursor powder was then added, 

and the mixture was stirred further to obtain a homogeneous suspension. Finally, the mixture was dried in a 

controlled oven environment to obtain the MgO/CuO composite powder (Fig. 1). The yield of CuO/MgO was found 

100%. 

 

Table 1. List of chemicals used in the present study, along with their purity, grade and supplier details.  

Chemical Formula/ 

Abbreviation 

Purity Grade Company 

Copper nitrate Cu (NO3)2.3H2O ≥99% AR Merck 

Sodium hydroxide NaOH ≥98% AR Merck 

Ethanol C2H5OH ≥99.9% 

(Absolute) 

AR Merck 

Magnesium oxide MgO ≥99% AR/HPLC Merck 

N-Methyl-2-pyrrolidone NMP ≥99.5% AR Merck 

Polyvinylidene fluoride PVDF ≥99% AR/Battery 

grade 

Sigma-

Aldrich 

 

 

3. Characterization of MgO/CuO: 

3.1 SEM and EDX analysis 

The morphological characteristics of MgO, CuO-NPs and the MgO/CuO composite were investigated using 

Scanning Electron Microscopy (SEM), and the corresponding images are presented in Fig. 2. A Zeiss EVO 18 

microscope was used for the SEM analysis.  

The SEM image of MgO reveals irregularly shaped particles with an asymmetric morphology, indicating a relatively 

rough and non-uniform particle distribution, which is consistent with previously reported morphologies of MgO 

powders that typically exhibit aggregated and irregular particles (Sim et al., 2024; Proniewicz et al., 2024). 

The SEM images (Fig. 2a to Fig.2f)) of CuO-NPs clearly show spheroidal particles, which are characteristic of 

well-formed CuO-NPs. Similar spherical or quasispherical CuO nanostructures have been widely reported in 

literature for nanoparticles synthesized via sol gel, chemical precipitation and green chemistry approaches (Taghavi, 
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2018). The morphology suggests the formation of NPs with relatively uniform shape and size. The SEM image of 

the MgO/CuO composite exhibits a semispherical morphology, indicating a significant change in particle structure 

upon the incorporation of CuO with MgO. This morphological transformation may enhance the functional properties 

of the composite, making it beneficial for various applications. 

The elemental composition of the synthesized materials was confirmed using energy-dispersive X-ray spectroscopy 

(EDX) with an AMETEK system (Hoang et al., 2019). The EDX spectrum of MgO powder (Fig.3) shows a clear 

dominance of magnesium (Mg) and oxygen (O), consistent with the expected composition of MgO. The weight and 

atomic percentage of Mg and O  (Fig. 3a) were found to be 47.5 % (42.2%) and 52.5 % (57.8%), respectively. The 

elemental analysis of CuO-NPs (Fig. 3b) confirmed the presence of copper (Cu) and oxygen (O), with weight and 

atomic percentages of 72.5 % (59.7%) and 27.5 % (40.3%), respectively, which align with the expected 1:1 atomic 

ratio of Cu to O in CuO. In the MgO/CuO composite (Fig. 3c) the weight and atomic percentages of Cu, Mg, O, and 

C, were determined to 40.7 % (22.1 %), 26.6% (19.9%), 28.7% (49.7%) and 4% (8.3%), respectively. A small peak 

at ̴ 2.2. keV corresponds to Au sputter-coating used to prevent charging during SEM imaging. 

 

 

Figure 2. SEM micrographs showing the morphology of (a) bulk MgO, (b) CuO-NPs, and (c-f) the MgO/CuO 

composite 

3.2 FTIR analysis 

The Fourier Transform Infrared (FTIR) spectra of bulk MgO (Fig. 4a), CuO-NPs (Fig. 4b)  and their MgO/CuO 

(Fig. 4c)  composite were analyzed using a Thermo Scientific Nicolet iS5 spectrometer (with iD1 ATR module) to 
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study the functional group and bonding interactions. The FTIR spectrum of bulk MgO shows prominent peaks at 

3697 cm-1, 2418 cm-1, 1592 -1, and 620 cm-1. The peak at 3697 cm-1 is attributed to the stretching vibrations of 

hydroxyl groups, indicating the presence of surface-bound water or hydroxylation of MgO surface, consistent with 

earlier reports for MgO materials (Kulkarni et al., 2017; Sembiring et al., 2017). The absorption at 2418 cm-1 can be 

linked to the stretching vibrations of the C=O bond, possibly due to absorption of atmospheric carbon dioxide, 

which is also commonly observed and other alkaline oxides (Kulkarni et al., 2017). The peak at 620 cm-1 is 

characteristic of Mg-O stretching vibration, confirming the presence of magnesium oxide framework (Sembiring et 

al., 2017; Essien et al., 2020). The FTIR spectrum of CuO-NPs shows significant peaks at 3562 cm-1, 1598 cm-1, 

1383 cm-1, 733 cm-1 and 602 cm-1. The peak at 733 cm-1 is indicative of Cu-O stretching, confirming the presence of 

copper oxide in nanoparticle form. The sharp peak at 602 cm-1 is also associated with Cu-O stretching mode, further 

supporting the formation of CuO-NPs (Panesar et al., 2020; Gouda et al., 2023; Topal Canbaz, 2023; Vinayagar et 

al., 2024). 
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Figure 3. EDX spectra of (a) bulk MgO, (b) CuO-NPs, and (c) the MgO/CuO composite. 

 

The FTIR spectrum of the MgO/CuO composite displays peaks at 3687 cm-1, 1596 cm-1, 988 cm-1, 872 cm-1 and 614 

cm-1. The presence of peaks at 988 cm-1 and 872 cm-1 indicates interaction between the MgO and CuO phases, 

possibly involving the formation of magnesium–copper oxide linkage or surface interaction between the two oxides 

or surface interaction altering the oxygen environment between these two oxides (Muhaymin et al. 2024). Similar 

new vibration bands arising from metal-oxygen linkage in mixed oxides have been reported in the literature (Gouda 

et al., 2023). The peak at 614 cm-1 is associated with Cu-O stretching vibration, characteristic of the CuO phase, and 

further supports the successful incorporation of CuO into MgO matrix (Gouda et al., 2023). 

The spectral features of all three samples showed good agreement with reported FTIR data of MgO and CuO, and 

mixed metal oxide systems, supporting the successful formation and interaction of the composite. 
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3.3 XRD analysis 

X-ray diffraction (XRD) analysis was performed using a Rigaku SmartLab SE diffractometer to determine the 

crystal structure of the CuO-NPs and the MgO/CuO composite. Fig. 3b shows the XRD patterns of the CuO-NPs 

and the MgO/CuO composite and indicates the semicrystalline nature of the CuO-NPs, which is consistent with 

literature where nanoparticles synthesized via wet-chemical, sol-gel methods, or precipitation methods often show 

similar broadening due to nanoscale grain size (Jillani, 2018; Mizoshiri & Yoshidomi, 2021). The observed peaks at 

2θ = 32.50, 35.60, 38.60, 48.60, 53.40, 65.90, and 67.80 are indexed to the (110), (002), (111), (-202), (020), (-311), 

and (220) planes, respectively, which are consistent with monoclinic structure of CuO (JCPDS No 48-1548). These 

peak positions and planes are in agreement with previously reported diffraction patterns for nanoscale monoclinic 

CuO, confirming the successful formation of CuO-NPs (Karthikeyan, 2021; Kalaiyarasi, 2024). 

 

 

Figure 4. (a) FTIR spectra of bulk MgO, CuO-NPs, and MgO/CuO composite. (b) XRD patterns of CuO-NPs and 

the MgO/CuO composite. 

 

 

In contrast, the XRD pattern of the MgO/CuO composite shows a noticeable reduction in peak intensity and 

broadening, particularly in the region corresponding to CuO, indicating a shift towards an amorphous-like character. 

The reduction in peak intensity and broadening observed in CuO region of Mgo/CuO composite’s XRD pattern can 

be attributed to lattice disruption caused by MgO incorporation, which disturbs the crystalline order of CuO, 

consistent with known phenomena in mixed metal oxide nano composites (Sundeep, 2016) 

The composite also displays additional peaks at 2θ values of 42.70 and 56.10, corresponds to the (200) and (220) 

planes, respectively, which are typically associated with the cubic structure of MgO (JCPDS No 45-0946). The 
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particle sizes of CuO and the MgO/CuO composite were calculated to be 12.18 nm and 8.57 nm, respectively 

(Wang, 2021). 

 

4. Electrochemical study 

Electrochemical measurements were performed using a Biologic VSP-3e potentiostat. The composite materials were 

mixed with PVDF, carbon black, and NMP (80:10:10) to prepare the electrode slurry, which was coated onto 

precleaned graphite foam and dried at 800C for 10 h. The mass difference before and after coating confirmed an 

active material loading of  ̴1mg. The Ni foam, Ag/AgCl, and platinum wire served as the working, reference, and 

counter electrodes, respectively, in 1M KOH. Cyclic voltammetry (CV), Galvanostatic charge-discharge (GCD), 

cycling stability, and Electrochemical impedance spectroscopy (EIS) analysis were conducted (Balasubramanian et 

al., 2015; Li et al., 2014).  

4.1 CV analysis 

At scan rates of 10mV/s, 20mV/s, 30mV/s, 50mV/s, 75mV/s, and 100mV/s, CV curves were obtained within the 

potential window of 0.2 to 0.8 V, as shown in Fig. 5 (a-f). For MgO, the specific capacitance values were found to 

be 2411.31 F/g, 665.78 F/g, 366.47 F/g, 185.44 F/g, 89.98 F/g, and 67.49 F/g, respectively.  For CuO, the specific 

capacitance values were 3014.61 F/g, 779.37 F/g, 438.17 F/g, 228.55 F/g, 144.55 F/g, and 108.41 F/g, respectively.  

 

 

Figure 5. CV curves recorded at different scan rates for (a) bulk MgO (b) CuO-NPs (c) MgO/CuO (three-electrode 

configuration), (d) MgO/CuO (two-electrode configuration) (e) comparison of MgO, CuO-NPs, and MgO/CuO in a 

three-electrode setup, and (f) comparison of MgO/CuO performance under two-and three-electrode systems.  
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 For the MgO/CuO composite in the three-electrode configuration, the specific capacitance values were significantly 

enhanced and measured to be 5750.66 F/g, 1718.12 F/g, 904.79 F/g, 442.82 F/g, 202.28 F/g, and 151.71 F/g, 

respectively. However, in the two-electrode configuration, the composite exhibited specific capacitance values of 

1135.72 F/g, 351.54 F/g, 177.52 F/g, 85.60 F/g, 37.95 F/g, and 28.46 F/g, respectively.  

The quasi-rectangular CV curves of the composite indicate significant energy storage capability and good material 

stability of the particular materials. These results also show that specific capacitance decreases with increasing scan 

rate due to the limited diffusion of charge carriers during the charge storage process (Gajraj et al., 2021). The 

decrease in specific capacitance suggests that ion diffusion plays a dominant role in the charge storage mechanism. 

At lower scan rates, the electrolyte ions have sufficient time to penetrate deeply into the porous structure of the 

electrode, resulting in higher specific capacitance (Rastogi et al., 2024).  A similar trend in specific capacitance has 

also been reported by Devi et al. (2022) for synthetically prepared Ag/r-GO nanocomposites.   

 

 

4.2 GCD analysis 

The GCD curves of MgO, CuO-NPs, and MgO/CuO under three and two-electrode systems at different current 

densities (2, 4, 6, 8, 10, and 12 A/g) are presented in Fig. 6. MgO exhibited specific capacitance values of 113.3, 

57.7, 40, 35.5, 33.3, and 13.3 F/g (Fig. 6a), whereas CuO-NPs showed values of 240, 66.6, 60, 53.3, 44.4, and 26.6 

F/g at the same current densities (Fig. 6b) (Ramachandran et al., 2024). Based on three-electrode measurements, the 

specific capacitance of the MgO/CuO composite was found to be 444.4, 288.8, 213.3, 168.8, 133.3, and 40 F/g (Fig. 

6c) (Durga et al., 2024). A comparison of MgO/CuO with other electrode materials is shown in Table 2.  

 

 

Figure 6. GCD curves at different current densities for (a) bulk MgO, (b) CuO-NPs, (c) MgO/CuO (three-electrode 

configuration), (d) MgO/CuO (two-electrode configuration), and (e) comparison of GCD behavior of MgO, CuO-

NPs, and MgO/CuO in the three-electrode setup. 
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Fig. 6d presents the symmetrical triangular GCD curve pattern of MgO/CuO in the two-electrode setup. These 

curves indicate high electrochemical reversibility, characteristics of efficient SCs (Wei et al., 2016). At current 

densities of 2, 4, 6, 8, 10, and 12 A/g, the specific capacitance values were 35.5, 33.3, 26.6, 17.7, 11.1, and 6.6 F/g, 

respectively (Liu et al., 2020).  A comparison of GCD curves in the three-electrode setup for MgO, CuO-NPs, and 

MgO/CuO is shown in Fig. 6e 

The specific capacitance decreases with increasing current density (Fig. 7a) and (Fig. 7b) due to diffusion-

controlled charge storage, consistent with Liu et al. (2020), who observed a similar trend for r-GO/polypyrrole 

GCD. 

The cyclic stability analysis was performed for 5000 cycles, and it was observed that after 1000 cycles (for the 

three-electrode setup), MgO NPs, CuO-NPs, and MgO/CuO NPs retained 99.1%, 99.7%, and 100%, respectively. 

After 2000 GCD cycles, the retention values were 94.2%, 96.2%, and 100%, respectively. After 4000 GCD cycles, 

the capacitance retention decreased to 83.2%, 85.8%, and 96.8% respectively. After 5000 GCD cycles, MgO, CuO, 

and MgO/CuO retained 82.7%, 84.9%, and 96.8% of their initial capacitance, respectively (Fig.7c). For the two-

electrode setup, the MgO/CuO composite retained 93.1% of its initial capacitance after 5000 GCD cycles (Fig.7d). 

Capacitance degradation during cycling arises from repeated ion insertion-extraction, limiting practical use (Kim et 

al., (2022), similar to trends reported by Kumari et al. (2017) for MnO2/r-GO. 

SCs bridge the gap between high-power/low-energy capacitors and rechargeable batteries. The power densities of 

MgO/CuO were found to be 426, 749.2, 1197, 1593, 1998, and 2448 W/kg at corresponding energy densities of 

1.775, 1.665, 1.33, 0.89, 0.56, and 0.34 Wh/kg (Fig. 7e). 

 

 

Figure 7: Variation of specific capacitance with current density for (a) three-electrode configuration and (b) two-

electrode configuration. (c) cyclic stability and percentage capacitance retention for MgO, CuO-NPs, and MgO/CuO 
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(three-electrode setup) (d) cyclic stability of MgO/CuO in a two-electrode setup, and (e) Ragone plot showing the 

relationship between power density and energy density  

 

 

4.3 EIS analysis 

The impedance characteristics of the MgO/CuO composite were investigated using the Nyquist plot (Fig. 8a). The 

absence of a semicircle in the high-frequency region indicates negligible charge-transfer resistance from the 

electrolyte, while the straight line in the low-frequency region suggests excellent ion-diffusion behavior within the 

composite. The Bode plot (Fig. 8b) represents the variation of phase shift between voltage and current. 

Nyquist plot analysis revealed an R(CR)(QR)(CR) equivalent circuit with series resistance and charge-transfer 

resistance values of 2.932Ω, and 7.95x10-17Ω , respectively. These values indicate good electrical conductivity of the 

MgO/CuO composite. Furthermore, the low Warburg impedance value (1.55x10-3Ω) demonstrates excellent ion-

diffusion capability within the MgO/CuO composite (Shinde et al., 2017). 

 

 

Figure 8: (a) Nyquist plot of the MgO/CuO composite, (b) Bode plot showing the phase angle variation with 

frequency.  

 

Table 2. Specific capacitance values of other metal oxide composites under various electrolytes and test conditions.  

Composites Electrolyte 
Test 

conditions 

Specific capacitance 

(F/g) 
Reference 

Cu MOF/rGO PVA-Na2SO4 1  A/g 385 Srimuk, P. et al., 2015 

Cu MOF/rGO 0.1 M PBS 1.6 A/g 685.33 Saraf, M. et al., 2016  

CuO/NCNO 1 M KOH 1 A/g 441.25 Sohouli, E., et al., 2023  

Zn/SnO2 1 M KCl 1 A/g 635 De Adhikari, A., et al., 2018  

ZnO/CoS2/NF 3 M KOH 1 A/g 400.2 Durga, I. K., et al., 2021  

MgO/CuO 1 M KOH 2 A/g 444.4 Present study 
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5. Conclusions 

 The structural, morphological, and electrochemical analyses collectively confirm the successful formation of the 

MgO/CuO composite and its enhanced suitability as an efficient supercapacitor electrode material. FTIR and EDX 

analysis verified the chemical interaction and incorporation of CuO within the MgO matrix, while SEM images 

revealed substantial morphological refinement due to CuO addition. XRD patterns indicated a partial loss of CuO 

crystallinity, contributing to improved electrochemical behavior. The MgO/CuO composite demonstrated 

significantly higher specific capacitance, excellent rate capability, and superior cycling stability, retaining 96.8% 

capacitance after 5000 GCD cycles. The low resistance, fast ion diffusion, and favorable charge-transfer kinetics 

observed in EIS further support its enhanced performance. These findings highlight MgO/CuO as a promising, low-

cost, and environmentally benign electrode material capable of bridging the performance gap between conventional 

capacitors and rechargeable batteries for next-generation energy storage applications.  

 Beyond energy storage, the findings of this study also indicate the potential applicability of MgO/CuO hybrid 

materials in biomedical fields. Both MgO and CuO are recognized for their biocompatibility, antimicrobial activity, 

and catalytic surface behavior, making them promising candidates for multifunctional biomedical platforms. The 

improved surface activity, high stability, and nanostructured features of the MgO/CuO composite could be exploited 

for antibacterial coatings, biosensing electrodes, drug-delivery carriers, and tissue-engineering scaffolds. Its 

enhanced electrochemical responsiveness may also contribute to improved sensing performance in biomedical 

diagnostics. Future investigations involving cytotoxicity assessment, antimicrobial efficacy, and biological 

interfacing are essential to translate these material advantages into practical biomedical applications. 
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