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Abstract: The presence of pharmaceuticals in water resourc-
es is a growing concern worldwide due to their potential health
impacts on aquatic life and humans. Therefore, there is a need
to develop effective and sustainable technologies for removing
these contaminants from water and wastewater. Magnetic
nanomaterials have emerged as promising materials for this pur-
pose due to their fast kinetics, easy magnetic separation, and
reuse. This review is important as it highlights the significance
of developing sustainable technologies using magnetic iron-
based nanomaterials for removing pharmaceutical contaminants
from water resources. This review investigated the application
of magnetic nanomaterials for removing pharmaceuticals from
water resources through adsorption and advanced oxidation
processes. Here, the synthesis and characterization of magnet-
ic nanomaterials and analytical detection techniques were eval-
uated. The review findings indicate that magnetic nanomaterials
effectively removed pharmaceuticals from water through ad-
sorption and advanced oxidation processes. More importantly,
the removal processes remained effective for many cycles. How-
ever, only 22% of the studies demonstrated the application of
magnetic nanomaterials on real water samples, as 78% stopped
at experiments using distilled water in the laboratory. Further
research on multi-component systems and real water samples
is necessary to fully evaluate the potential of magnetic nanoma-
terials for pharmaceutical removal from water resources.
Keywords: Contaminants of emerging concern; Pharmaceuti-
cals; Magnetic Iron based nanomaterials; Adsorption; Advanced
oxidation process.

1. INTRODUCTION

Globally, pharmaceuticals have been frequently detected in water re-
sources such as surface water, groundwater and industrial wastewa-
ter in the last decade. In Africa, different classes of pharmaceuticals,
such as antibiotics, analgesics, anticonvulsant, anti-inflammatory, and
antiviral drugs etc., were detected in surface water, groundwater and
industrial wastewater from Uganda (Dalahmeh et al., 2020; Nantaba
et al., 2020), Kenya (K’oreje et al., 2016; K’oreje et al., 2012,), Nigeria
(Folarin et al., 2019; Jennifer et al., 2020) and South Africa (Gumbi
et al., 2016; Hlengwa & Mahlambi, 2020; Madikizela et al., 2017; Si-
beko et al., 2019). More details on occurrences, distributions and risk
assessments of pharmaceuticals in water resources across five African
regions are well documented by (Shehu et al., 2022). Coincidental-
ly, similar trends of pharmaceuticals detected in African water re-
sources were also found in Greece (Kosma et al., 2014; Papageorgiou
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et al., 2016), Czech republic (Buriankova et al.,
2021; Golovko et al., 2014), Poland (Kapelewska
et al., 2018; Migowska et al., 2012; Styszko et al.,
2021), Canada (Guerra et al., 2014), India (Diwan
et al., 2009; Mohapatra et al., 2016), Iran (Mirzaei
et al., 2018), Pakistan (Ashfaq et al., 2016), Qatar
(Al-maadheed et al., 2019), Singapore (Tran et al.,
2016), Spain (Gros et al., 2013), Croatia (Senta and
Ahel 2012), Belgium (Lorenzo et al., 2018), Italy
(Verlicchi et al., 2012, 2014), Germany (Rossmann
et al., 2018), Malaysia (Omar et al., 2019), USA
(Karthikeyan & Meyer, 2006), Vietnam (Nguy-
en et al., 2015), China ( Hanna et al., 2018), Japan
(Murata et al., 2011), Iraq (Al-Khazrajy & Boxall,
2016) and Sweden (Baresel et al., (2015). Enough
evidence to declare pharmaceutical pollution as a
global issue affecting water resources is document-
ed by (Omuferen et al., 2022).

Due to the regular occurrence of pharmaceuti-
cals in global water resources, its risks, such as the
development of antibiotic resistance and toxicity to
aquatic life, it is imperative to develop appropriate
technologies that can specifically removal pharma-
ceuticals from water (Shehu et al., 2022; Wang &
Wang, 2016, 2019, 2022). The conventional water
and wastewater treatment methods are advanced
oxidation, reverse osmosis, ultrafiltration, electro-
chemical methods, coagulation-flocculation, pre-
cipitation, ion exchange, and adsorption(Ajala et al.,
2018). However, these technologies are not effec-
tive in the removal of pharmaceuticals from water
and wastewater, and a number of these compounds
are frequently detected in water bodies despite the
presence of water treatment facilities (Wang et al.,
2019; Wang & Chu, 2016; Wang & Zhuan, 2020).
One promising approach in water or wastewater
treatment is the use of nanotechnology for contam-
inant removal.

Nanotechnology involves the design, synthesis,
characterization, and applications of structures, de-
vices and systems at the nanometer scale (Porwal
& Sharma, 2016; Qu et al., 2013). Nanomaterials
have attracted attention due to unique properties
such as the high surface area to volume ratio, sur-
face reactivity, and ability to be functionalized for
a specific target. Thus, nanomaterials are used as
nanoadsorbents or nanocatalysts for the removal of
a wide range of pollutants, including pharmaceuti-
cals, from water and wastewater (Bhattacharya et
al., 2013; Chakraborty et al., 2022; Kar et al., 2021,
2022; Kaushik et al., 2021; Lamayi et al., 2018; B.
Sharma et al., 2021; Shehu & Lamayi, 2019; N.
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Singh et al., 2022). In recent times, numerous re-
ported applications of nanoparticles for the remov-
al of various pharmaceuticals in water through
adsorption processes (Choina et al., 2014; Dada et
al., 2021; Rosli et al., 2021; Xing et al., 2020) and
advanced oxidation processes (Hojamberdiev et al.,
2020; Zeng et al., 2018; Zhu et al., 2019). However,
the significant setbacks of nanotechnology are the
separation of the nanomaterials after treatment, in-
stability and possible toxicity that could arise due to
the nanoparticles’ choice (Bhattacharya et al., 2013).
These problems can be solved by using magnetic
nanomaterials, the development of nanocomposites
and choosing less or non-toxic nanomaterials.

Magnetic Iron based nanomaterials include;
nano zerovalent Iron (Li et al., 2017; Rosicka & Sem-
bera, 2011; Vecchia et al., 2009), magnetite (Fe,O,)
(Saeed et al., 2020), maghemite (Fe,O,) (Aragaw
and Aragaw 2021) and magnetic metal ferrites (Bao
et al., 2013). Magnetic iron nanoparticles are wide-
ly used in environmental remediation because it is
less or non-toxic and sustainable. Sustainability is
due to magnetism that provides easy recovery and
reuse. Moreover, magnetic iron nanoparticles pos-
sess fast kinetics and high adsorptive and catalytic
properties. Noteworthy, the magnetic saturation re-
quirement of 1.0 emu/g is needed for any magnetic
materials expecting magnetic separation after water
treatment (Li et al., 2019).

Therefore, this study aimed to review recent
contributions of nanotechnology with the aid of
Magnetic iron nanoparticles toward treating wa-
ter-containing pharmaceuticals. Furthermore, var-
ious synthesis methods and characterization tech-
niques that are commonly used for Magnetic iron
nanoparticles were reviewed. More importantly,
this review is limited to applications of Magnetic
iron nanoparticles in the advanced oxidation pro-
cess (AOP) and adsorption process of conventional
water treatment.

2. METHOD

The articles were gathered from search engines and
database such as Scopus, web of science, google,
pumped, Medline and google scholar from 2009 to
2021, Fig.1. The keywords that were used includes
pharmaceutical emerging pollutant/contaminants,
magnetic nanoparticle/nanomaterials, adsorption,
advanced oxidation processes, and water/wastewa-
ter. From the literature search, 1000 publications
were found. However, 928 articles were excluded
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based on; 1) Articles that exclusively investigate the
application of magnetic nanomaterials in the remov-
al of emerging pollutants other than pharmaceutical
pollutants, 2) Articles that exclusively investigate
the application of magnetic nanomaterials in the re-
moval of heavy metals, dyes, microorganism and
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nutrients other than pharmaceutical emerging pol-
lutants. Hence, only 72 articles (Fig.1) were studied
in this review based on the application of magnetic
nanomaterials in the removal of pharmaceuticals
from water through adsorption and advanced oxi-
dation processes.
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Figure 1. Yearly distribution of publications.

3. SYNTHESIS OF MAGNETIC
IRON-BASED NANOMATERIALS

An essential component of nanoscience and nano-
technology is synthesizing materials like magnetic
nanoparticles (Balakrishnan et al., 2021; Bao et al.,
2014; Lima et al., 2014; Liyanage et al., 2020; Niu et
al., 2011; Vicente-Martinez et al., 2020). Only when
nanostructured materials are made available with
appropriate size, shape, morphology, crystal struc-
ture, and chemical composition are new physical
attributes and uses of nanoparticles possible (Bal-
akrishnan et al., 2021; Bao et al., 2014; Lima et al.,
2014; Liyanage et al., 2020; Niu et al., 2011; Vicen-
te-Martinez et al., 2020). The qualities of a material
determine how well it performs. The atomic struc-
ture, composition, microstructure, flaws, and inter-
faces are all influenced by the thermodynamics and
kinetics of the synthesis, and these factors, in turn,
depend on the characteristics. Many publications
have reported various syntheses methods including
co-precipitation (47%), hydrothermal (14%), sol-
gel (13%), impregnation (9%), microwave-assisted
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(6%), green (3%), precipitation (3%), thermal de-
composition (1%), sonochemical (1%), solvother-
mal (1%), chemical deposition (1%) and combustion
(1%), Fig. 2. Magnetic iron-based nanomaterials
synthesized through these methods have shown
promising results in various water and wastewater
treatment applications due to their unique properties
such as high surface area, magnetic properties, and
stability in harsh environments. Among the meth-
ods, co-precipitation, hydrothermal and sol-gel are
known to be simple and promote surface modifica-
tion of the nanomaterials. Hence, the methods were
widely used in synthesizing nanomaterials for wa-
ter and wastewater applications. However, co-pre-
cipitation is mostly used in nanomaterials syntheses
because it can occur at ambient temperature.
However, a brief description of each synthesis
is given below. Co-precipitation is a widely used
method for synthesizing magnetic iron-based nano-
materials (Foroughi et al., 2019; Huang et al., 2020;
Liyanage et al,, 2020; Malakootian et al., 2018;
Malakootian & Shiri, 2021; Wang, et al., 2020;
Yegane Badi et al., 2018). This method involves the
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Figure 2. Synthesis of magnetic nanomaterials by different methods.

simultaneous precipitation of iron salts and a base
to form iron oxide nanoparticles. The process can
be performed at room temperature or higher tem-
peratures, and the particle size can be controlled by
adjusting the reaction conditions (Attia et al., 2013;
Cusioli et al., 2020; D’Cruz et al., 2020; Ghosh et
al., 2013; Kakavandi et al., 2014; Mashile et al.,
2020; Mohammadi et al., 2021; Olusegun & Moha-
llem, 2020; Rocha et al., 2021; Zhang et al., 2017).
Impregnation involves the deposition of iron oxide
nanoparticles onto a support material by impregnat-
ing the support material with a solution containing
iron salts. The process is typically performed at
room temperature, and the particle size can be con-
trolled by adjusting the reaction conditions(Liu et
al., 2019; Mahmoud et al., 2021; Nodeh et al., 2018;
Vicente-Martinez et al., 2020). Sol-gel synthesis
involves the formation of a colloidal suspension of
iron oxide nanoparticles by hydrolysis and conden-
sation of metal alkoxides. The process is typically
performed at low temperatures, and the particle size
can be controlled by adjusting the reaction condi-
tions (Amraei et al., 2016; Duan et al., 2019; Hayasi
& Saadatjoo, 2017; Kollarahithlu & Balakrishnan,
2019; Kumar, Khan, et al., 2018; Mostafaloo et al.,
2020; Parashar et al., 2019; Peralta et al., 2021; S.
F. Soares et al., 2019). Hydrothermal synthesis in-
volves the use of high-pressure and high-tempera-
ture conditions to promote the growth of iron oxide
nanoparticles. The process is typically performed
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in a sealed vessel, and the particle size can be con-
trolled by adjusting the reaction time, temperature,
and pressure (Bao et al., 2013; Lu et al., 2016; Mal-
akootian et al., 2019; Mao et al., 2016; Soares et al.,
2019). Microwave-assisted synthesis involves the
use of microwave radiation to promote the growth
of iron oxide nanoparticles. The process is typical-
ly performed at room temperature, and the particle
size can be controlled by adjusting the reaction time
and power (Nasiri, Tamaddon, Hossein, et al., 2019;
Nasiri, et al., 2019; Tamaddon et al., 2020). Green
synthesis involves the use of natural plant extracts
or other environmentally friendly materials to syn-
thesize iron oxide nanoparticles. The process is typ-
ically performed at low temperatures, and the parti-
cle size can be controlled by adjusting the reaction
conditions (Stan et al., 2017; Ye et al., 2021).
Precipitation involves the precipitation of iron
salts from a solution to form iron oxide nanopar-
ticles. The process is typically performed at room
temperature, and the particle size can be controlled
by adjusting the reaction conditions (Dehghan et
al., 2018; Oliveira et al., 2017). Thermal decomposi-
tion involves the decomposition of iron-containing
precursors at high temperatures to form iron oxide
nanoparticles. The process is typically performed
at high temperatures, and the particle size can be
controlled by adjusting the reaction conditions (Li,
Ng, et al., 2017). Sonochemical synthesis involves
the use of ultrasound waves to promote the growth
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of iron oxide nanoparticles. The process is typical-
ly performed at room temperature, and the particle
size can be controlled by adjusting the reaction time
and power (Bao et al., 2014). Solvothermal synthe-
sis involves the use of a solvent at high temperatures
and pressures to promote the growth of iron oxide
nanoparticles. The process is typically performed
in a sealed vessel, and the particle size can be con-
trolled by adjusting the reaction time, tempera-
ture, pressure, and solvent type (Silva et al., 2021).
Chemical deposition involves the deposition of iron
oxide nanoparticles onto a substrate using a chemi-
cal reaction. This method typically involves the use
of a reducing agent to reduce the iron ions to form
iron oxide nanoparticles on the substrate surface.
Chemical deposition is a relatively simple and low-
cost method for synthesizing magnetic iron-based
nanomaterials. However, the particle size and dis-
tribution can be difficult to control using this meth-
od (Sayadi & Ahmadpour, 2021). Combustion syn-
thesis involves the use of a fuel and an oxidizer to
rapidly heat and combust a mixture of metal salts to
form metal oxide nanoparticles. This method is typ-
ically performed at high temperatures and produces
highly crystalline nanoparticles with a narrow size
distribution (Al-Anazi et al., 2020b). Combustion
synthesis is a relatively simple and low-cost method
for synthesizing magnetic iron-based nanomateri-
als. However, the high-temperature conditions can
lead to the formation of impurities and defects in
the nanoparticles.

4. CHARACTERIZATION OF MAGNETIC
IRON-BASED NANOMATERIALS

Characterization provides comprehensive informa-
tion on nanomaterials’ particle size, shape, com-
position and magnetic properties. Transmission
electron microscopy (TEM), scanning electron mi-
croscopy (SEM), Fourier transform infrared spec-
troscopy (FTIR), Brunauer-Emmett-Teller (BET)
surface area analyzer, Vibrating sample mag-
netometer, and powder X-ray diffraction (XRD)
techniques are a few of the methods frequently
used in the literature for magnetic nanoparticle
characterization. FTIR spectra reveal the chem-
ical linkages between the magnetic core and the
organic surface layer (Bao et al., 2014; Malakoo-
tian et al., 2019; Nasiri et al., 2019; Soares et al.,
2019; Tamaddon et al., 2020; Wang et al., 2020).
Scanning electron microscope/Energy dispersive
X-ray spectroscopy (SEM/EDX) can be used to
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analyze magnetic particles’ surface covering and
determine their constituent elements (Balakrish-
nan et al., 2021; Liyanage et al., 2020; Malakoo-
tian et al., 2018; Noroozi et al., 2020; Solis et al.,
2021; Yegane et al., 2018). Powder XRD is used to
characterize the bulk magnetic nanoparticles and
identify their crystal structure (Chen et al., 2018;
Malakootian and Shiri 2021; Parashar et al., 2019;
Sayadi and Ahmadpour 2021). TEM provides can-
did pictures that can be used to determine the size
and shape of nanoparticles (Akkari et al., 2018;
Jonidi et al., 2017; Kumar et al., 2018; Mahmoud et
al., 2021; Vicente-Martinez et al., 2020). A vibrat-
ing sample magnetometer is used to measure the
magnetic properties of magnetic materials (Kumar
et al., 2018; Lai et al., 2019; Mao et al., 2016; No-
deh et al., 2018). Dynamic light scattering (DLS)
is used to investigate the surface charge of mag-
netic nanomaterials in solution (Balakrishnan et
al., 2021; Lima et al., 2014; Malakootian & Shiri,
2021; Olusegun et al., 2021; Parashar et al., 2019;
Sayadi & Ahmadpour, 2021). Thermogravimetric
analysis (TGA) is used to measure the thermal
properties of magnetic nanomaterials (Nawaz et
al., 2019; Vicente-Martinez et al., 2020; Zhang et
al., 2017). Brunauer-Emmett-Teller (BET) surface
area analysis is the multi-point measurement of an
analyte’s specific surface area (m2/g) using gas ad-
sorption analysis, in which a solid sample is either
suspended in a predetermined gaseous volume or
continually flowing over by an inert gas such as
nitrogen (Kakavandi et al., 2016; Kollarahithlu and
Balakrishnan 2019; Li et al., 2017). Energy band
gap of magnetic nanomaterials are characterized
by DRS/UV/VIS spectrophotometer (Kumar et al.,
2018; Malakootian et al., 2019; Nasiri et al., 2019;
Nawaz et al., 2019; Sayadi and Ahmadpour 2021).
In this review, the percentage of characterization
techniques reported in different studies are pre-
sented in Fig. 3. However, since each characteri-
zation technique present a unique and independent
property, the reason for high and low percentage
utilization could be due to availability of the in-
strument to the researcher’s disposal. Noteworthy,
TGA and DRS/UV/VIS spectrophotometer char-
acterization techniques were observed in unique
ways. TGA techniques were widely in character-
izing activated carbon and organic molecules mod-
ified magnetic nanomaterials. Whereas, DRS/UV/
VIS spectrophotometer was used in determining
energy band gap for magnetic nanomaterials used
in advanced oxidation processes (AOPs).

Nanofabrication (2024), 9 | 5
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Figure 3. Characterization techniques.

5. ANALYTICAL DETECTION
TECHNIQUES

Analytical techniques such as gas and liquid
chromatography coupled with UV or mass de-
tectors are used for the identification and quan-
tification of residual concentrations of pharma-
ceutical emerging pollutants. Also, UV/Visible
spectrophotometer is used for the quantification
of pharmaceuticals. For adsorption studies, 23, 15
and 1 publications reported quantification of phar-
maceutical emerging pollutants using UV/Visible
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spectrophotometer, HPLC/UV/MS and GC//MS
respectively, Fig. 4. Similarly, for advanced oxi-
dation processes (AOPs), 7, and 26 publications re-
ported quantification of pharmaceutical emerging
pollutants using UV/Visible spectrophotometer,
and HPLC/UV/MS respectively, Fig. 5. In adsorp-
tion studies, UV/Visible spectrophotometer was
the most frequent used technique because the tar-
get is only quantifications while in AOPs, HPLC/
UV/MS was frequently used because the goals
were quantifications and identifications of degra-
dation products.

D
1
0 |
UV/VIS/SPEC HPLC/UV/MS GC/MS

Figure 4. Analytical detection techniques for adsorption studies.
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6. STABILITY AND COLLOIDAL
STABILITY OF IRON-BASED MAGNETIC
NANOMATERIALS FOR WATER

AND WASTEWATER TREATMENT

Iron-based magnetic nanomaterials have shown
great water and wastewater treatment potential due
to their unique magnetic properties and high re-
activity(Aragaw et al., 2021). However, these ma-
terials’ stability and colloidal stability are critical
factors that need to be considered for their efficient
application. In terms of stability, iron-based mag-
netic nanomaterials are generally stable in aqueous
solutions. However, iron-based magnetic nanoma-
terials are exposed to various environmental con-
ditions in water and wastewater treatment, such
as pH, temperature, and ionic strength, which can
affect their stability (Mylon et al., 2004). For exam-
ple, at low pH values, iron-based magnetic nanoma-
terials can undergo dissolution, which can lead to a
decrease in their effectiveness for water treatment.
Colloidal stability is another important factor influ-
encing iron-based magnetic nanomaterials’ perfor-
mance in water and wastewater treatment (Marinin,
2012). The colloidal stability of these materials re-
fers to their ability to remain suspended in solution
without aggregation or settling (Wu et al., 2008).
Colloidal stability can be affected by factors such
as surface charge, particle size, and the presence of
other ions (Mylon et al., 2004). The colloidal stabili-
ty of these materials can be improved by modifying
their surface properties through functionalization

https://doi.org/10.37819/nanofabh.009.1797
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HPLC/UV/MS

Figure 5. Analytical detection techniques for advanced oxidation processes.

with organic or inorganic compounds (Akawa et al.,
2020, 2021). Surface modification can enhance the
electrostatic and steric repulsion between particles,
preventing them from agglomerating and improv-
ing their colloidal stability (Mao et al., 2016).

The stability of these materials can be evaluat-
ed by measuring their aggregation behavior under
different conditions. For example, dynamic light
scattering (DLS) and zeta potential measurements
can be used to determine these materials’ size dis-
tribution and surface charge (Balakrishnan et al.,
2021; Lima et al., 2014; Malakootian & Shiri, 2021;
Olusegun et al., 2021; Parashar et al., 2019; Sayadi
& Ahmadpour, 2021).

7. PHARMACEUTICALS REMOVAL
FROM WATER RESOURCES

In recent time, the demand for pharmaceuticals for
humans and animals have increased due to the rap-
id increase of the global population. Conversely,
this leads to an increase in pharmaceutical produc-
tion. The endpoint of pharmaceutical residue from
pharmaceutical industrial wastewater and solid
waste is water resources. These have tremendous
negative effects on aquatic and terrestrial lives. To
regenerate water resources, there is a need to look
for the best and most sustainable technology that
can remove pharmaceuticals from various sourc-
es such as freshwater, groundwater, seawater, and
wastewater, etc. Therefore, magnetic nanomaterials
stand as the best materials due to their effectiveness

Nanofabrication (2024), 9 | 7
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in adsorption and degradation of pharmaceuticals,
easy separation from treated water and reuse for
several cycles with losing their capacity. The sche-
matic representation of magnetic nanomaterials in
the removal of pharmaceuticals from water through
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adsorption process and advanced oxidation process-
es is given in Fig. 6. More details of the adsorption
process and advanced oxidation processes for the
removal of pharmaceuticals are given in sections
7.1 and 7.2, respectively.
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Figure 6. Schematic representation of removal of pharmaceuticals from water resources

through adsorption and advanced oxidation processes by magnetic iron-based nanomaterials

7.1. Removal of pharmaceutical
by adsorption process

Adsorption is a widely used technique for removing
pharmaceuticals from water resources. Magnetic
iron-based nanomaterials have a high surface area
and strong magnetic properties, making them ex-
cellent adsorbents for removing pharmaceuticals
from water resources, Table 1. The adsorption pro-
cess involves the attraction of pharmaceutical mol-
ecules to the surface of magnetic iron-based nano-
materials. The pharmaceuticals then bind to the
surface of the magnetic iron-based nanomaterials,
which can be easily removed from the water using a
magnetic field. The mechanism of removal of phar-
maceuticals by adsorption process using magnetic
iron-based nanomaterials is based on the principle
of the Van der Waals forces, pore filling/size-selec-
tive adsorption, electrostatic interactions, hydrogen

8 | Nanofabrication (2024) 9

bonding, m-m interaction/stacking hydrophobic
interaction (Zhuang, Chen, et al., 2020; Zhuang,
Cheng, et al., 2019; Zhuang, Liu, et al., 2019, 2020;
Zhuang, Zhu, et al., 2020). Several factors, such as
pH, concentration, temperature, and contact time,
influence pharmaceuticals’ adsorption on magnetic
iron-based nanomaterials, as in Table 1.

Various studies have shown that magnetic iron-
based nanomaterials such as Fe,O,, Fe O,, cyste-
ine-modified silane-coated magnetic nanomaterial,
Magnetic genipin-crosslinked chitosan/graphene
oxide-SO_H, Fe O, -beta-cyclodextrin, and Fe O,/
GO etc., can effectively remove various pharma-
ceuticals such as ibuprofen, paracetamol, and tetra-
cycline etc. from water resources, Table 1. Modify-
ing the magnetic iron-based nanomaterials’ surface
with different functional groups such as carboxyl,
amine, and hydroxyl can improve adsorption, as ob-
served from several studies in Table 1.

https://doi.org/10.37819/nanofabh.009.1797
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7.2. Removal of Pharmaceutical
by Advanced Oxidation Process

Advanced Oxidation Processes (AOP) are technol-
ogies that generate reactive oxygen species such as
hydroxyl radicals (OH¢) or sulfate radicals for ox-
idation of traceable organic contaminants or some
inorganic pollutants or to increase wastewater bio-
degradability as a pre-treatment condition before
biological treatment (Deng & Zhao, 2015; Wang
& Xu, 2012). There are two advanced Oxidation
Processes which are dark and light-driven. The
dark advanced oxidation process includes; Ozone
(03), Fenton (Fe** + H,0,), Electrolysis (elec-
trodes + current), and Sonolysis (Ultrasounds). The
light-driven advanced oxidation process includes;
Photolysis (UV + H,0,), Photocatalysis (light +
catalyst) and Photo-Fenton (solar light + Fenton).
Mechanisms of AOPs (Kommineni et al., 2008) are
1) the Formation of oxidants (e.g. hydroxyl radi-
cals), 2) the reaction of these oxidants with organic
compounds in the water-producing biodegradable
intermediates, and 3) the reaction of biodegradable
intermediates with oxidants referred to as miner-
alization (i.e. production of water, carbon dioxide
and inorganic salts).

In this process, magnetic iron-based nanoma-
terials are added to the water, and then a reactive
species is generated, such as hydrogen peroxide or
ozone (Liu et al., 2021; Liu & Wang, 2023; Tang &
Wang, 2018; Wang & Tang, 2021). These reactive
species then react with the pharmaceuticals, break-
ing them down into simpler, non-toxic compounds.
The magnetic iron-based nanomaterials play a criti-
cal role in this process, as they help to generate and
distribute the reactive species throughout the water.
Several AOPs such as photocatalysis, photo-fenton,
Fenton-like system, peroxymonosulfate (PMS),
Sono-Fenton system, Persulfate (PS) system, UV/
chlorine system, and Peroxydisulfate (PDS) system
using different magnetic iron-based nanomaterials
were investigated for degradation of pharmaceu-
ticals, as shown in Table 2. The use of magnetic
iron-based nanomaterials in AOPs has shown high
removal efficiency and can be improved by modify-
ing the magnetic iron-based nanomaterials’ surface
with different functional groups, Table 2.

14 | Nanofabrication (2024) 9
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8. RECYCLING AND REUSE EXPERIMENTS

Recyclability and reusability of magnetic nanoma-
terials are essential factors for practical application
in water and wastewater treatment. To achieve re-
cyclability and reusability, desorption experiments
must be carried out using an appropriate desorbing
agent at the end of each adsorption cycle. It is worth
noting that some desorbing agents include ethano/
water (Chen et al., 2018; D’Cruz et al., 2020; Ha-
yasi and Saadatjoo 2017; Kakavandi et al., 2014;
Kumar et al., 2018; Malakootian et al., 2019; Na-
siri et al., 2019; Noroozi et al., 2020; Soares et al.,
2019; Tamaddon et al., 2020), distilled water (De-
hghan et al., 2018; Hou et al., 2015; Jonidi et al.,
2017; Kakavandi et al., 2016; Kumar et al., 2018;
Niu et al., 2011; Xiang et al., 2020; Yegane et al.,
2018), dilute HCI solution (Jang et al., 2020; Vicen-
te-Martinez et al., 2020; Zhang et al., 2017), meth-
anol/water (Bao et al., 2014; Liyanage et al., 2020;
Parashar et al., 2019), dilute NaOH (Lu et al., 2016),
dilute NaOH/methanol (Mahmoud et al., 2021; No-
deh et al., 2018), thermal degradation (Mashile et
al., 2020; Solis et al., 2021), ultrasonication (Ghosh
et al., 2013), and water/acetone (Li et al., 2016; Stan
et al., 2017). Furthermore, another significant factor
for practical application catalysts and adsorbents is
separation. Thus, magnetic nanomaterials are easily
separated from the solution with the aid of an ex-
ternal magnetic field. All the publications reported
the separation of the magnetic nanomaterials from
the treated water or wastewater using an external
magnetic field.

The percentage distribution of reuse and non-re-
use of magnetic nanomaterials for the removal of
pharmaceuticals from water was evaluated. About
78% of articles reported the reuse of magnetic
nanomaterials for the removal of pharmaceuticals
from water through adsorption and advanced oxida-
tion processes. Most of the reusability studies were
carried out between three and four cycles without
the materials losing their efficiency. However, de-
spite the fact that the magnetic nanomaterials were
easily separated, 22% of the literature did not car-
ry out reusability. This could be probably due to
the researchers’ interest since the materials were
recovered.

https://doi.org/10.37819/nanofabh.009.1797
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9. REAL WATER SAMPLES APPLICATION

The composition of water resources samples such
as lake, river, sea, groundwater, and wastewater,
etc. differ largely from distilled water used in
laboratory experiments. Hence, newly developed
magnetic materials’ capability must be demon-
strated with environmental water samples to un-
derstand the feasibility of the materials before
the pilot scale. From the articles reviewed, 78%
of publications did not carry out real water sam-
ple analysis and these represent a large portion of
the research. Thus, more research is needed for
real water samples. The other portion that reported
real water analysis is 22%. Though the portion is
very small, results demonstrated that the magnetic
nanoparticles were effective in removal of pharma-
ceuticals from river water (Attia et al., 2013; Lai
et al., 2019; Stan et al., 2017; Wang et al., 2020),
lake water (Huang et al., 2020; Wang et al., 2020;
Zhang et al., 2017), seawater (Attia et al., 2013; Vi-
cente-Martinez et al., 2020), industrial wastewater
(Attia et al., 2013; Kumar et al., 2018; Malakoot-
ian and Shiri 2021; Mashile et al., 2020; Nasiri et
al., 2019; Olusegun and Mohallem 2020; Rocha et
al., 2021; Stan et al., 2017; Vicente-Martinez et al.,
2020; Wang et al., 2020; Ye et al., 2021), medical
wastewater (Wang et al., 2020), urban wastewater
(Solis et al., 2021), pool water (Zhang et al., 2017)
and tap water (Lai et al., 2019; Stan et al., 2017;
Vicente-Martinez et al., 2020; Wang et al., 2020;
Zhang et al., 2017). These indicate that magnetic
nanomaterials have good prospects for water and
wastewater treatment.

10. DRAWBACKS OF MAGNETIC
IRON-BASED NANOMATERIALS

Magnetic iron-based nanomaterials have shown
promise for the removal of pharmaceuticals from
water (Abdel Maksoud et al., 2020). However, it is
important to consider several drawbacks associat-
ed with these materials. One limitation is that they
may not be effective for the removal of all types
of pharmaceuticals, especially those that are high-
ly soluble and do not adsorb well onto the surface
of the nanomaterials (Wu et al., 2008). This can
limit their overall effectiveness in water treatment
applications. Another drawback is the cost asso-
ciated with the production and functionalization
of magnetic iron-based nanomaterials (Leonel
et al., 2021; Singh et al., 2020). These processes

https://doi.org/10.37819/nanofabh.009.1797
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can be expensive and may require specialized
equipment and expertise, making the widespread
implementation of these materials in water treat-
ment systems economically challenging. Further-
more, there are concerns about the potential envi-
ronmental impacts of using magnetic iron-based
nanomaterials for water treatment (Guo et al.,
2013; Leonel et al., 2021). While these materials
are generally considered safe, their long-term ef-
fects on the environment are not well understood.
Thorough studies are needed to assess any poten-
tial risks associated with their use. Additionally,
the stability of magnetic iron-based nanomaterials
in water is a concern (Aragaw et al., 2021; Sharma
et al., 2015; Singh et al., 2021). Over time, these
materials can undergo degradation or aggrega-
tion, which can limit their effectiveness for water
treatment. It is crucial to ensure that these materi-
als maintain their stability and performance over
extended periods to ensure their efficacy in water
treatment applications.

11. SUMMARY, CONCLUSION
AND FUTURE PROSPECTS

In this work, synthesis, characterization and appli-
cation of magnetic nanomaterials in the removal of
pharmaceuticals from water through adsorption and
advanced oxidation processes were investigated.
Several synthesis methods reported in the articles
studied are Co-precipitation, sol-gel, hydrothermal,
solvothermal, sonochemical, microwave-assisted,
impregnation, thermal decomposition, combustion,
chemical deposition, and green. However, co-pre-
cipitation was the most frequent synthesis meth-
od reported due to the following: 1) It is simple,
2) It can be carried out at an ambient temperature
and 3) Scalable productions. The characterization
techniques frequently reported in the evaluation of
magnetic nanomaterials include SEM/EDX, XRD,
FTIR, DRS/UV/VIS, TEM, DLS, TGA, BET and
VSM. Only three analytical techniques were used
in the detection of the pharmaceuticals from the lit-
erature evaluated. These analytical techniques are
gas chromatography, UV/Visible spectrophotome-
try, and high-performance liquid chromatography
(HPLC) coupled with either UV or mass spectro-
photometry (MS) as HPLC/UV/MS. Noteworthy,
UV/Visible spectrophotometry was mostly used
in pharmaceuticals’ residual analysis after adsorp-
tion because the interest is just quantification, but
in advanced oxidation processes, since degradation

Nanofabrication (2024), 9 | 21
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products are of interest, HPLC/UV/MS was fre-
quently used. Furthermore, in studies where real
water analysis was conducted, HPLC/UV/MS
was used regardless of whether the removal pro-
cess was based on adsorption or advanced oxida-
tion processes. This indicates the sensitivity and
effectiveness of HPLC/UV/MS over UV/Visible
spectrophotometry.

Overall, the application of magnetic nanomate-
rials in the removal of pharmaceuticals from water
through the adsorption process and advanced ox-
idation processes was found to be promising. The
magnetic nanoparticles were separated from the
solution by external magnetic field, regenerated us-
ing various desorbing agents and reused for sever-
al cycles while maintaining its efficiency. Quite a
portion of about 78 % of publications reported the
reuse of the magnetic nanoparticles. Some of the
desorbing agents reported in the works of literature
are ethanol/water, methanol/water, acetonitrile/
water, 0.1 M NaOH, 0.1 M HCI and acetone/water.
Although only 22% of research was demonstrated
with real water samples, the results were almost
the same as the ones carried out using the synthetic
solution. Although magnetic nanoparticles are ex-
cellent adsorbents and catalysts for removing phar-
maceuticals from water, according to the results of
this review, the following factors must be taken into
account to enable large-scale water and wastewater
treatments;

* Researchers need to make sure that more mag-
netic materials are developed, non-toxic mate-
rials are used for coatings and functionaliza-
tion, and ecotoxicity testing is done from the
manufacturing stage of nanomaterials to water
treatment.

* Since batch methods are frequently em-
ployed, there is a need for continuous (column)
treatment.

» For effective water treatment, real water sample
treatment and a particular magnetic separator
technology are required.

* Researchers should employ HPLC/MS as an an-
alytical technique to quantify the residual levels
of medications because of their sensitivity.

» Costsrelated to research initiatives should be es-
timated. A partnership between academics and
NGOs, the government, businesses, or funding
organizations would encourage the rapid actu-
alization of magnetic nanoparticles for treating
pharmaceutical-containing water.
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