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Green synthesis of multi-doped carbon dots 
from Prickly Pear in the presence of nitrogen, 
phosphorus, and nitrogen-phosphorus solutions

Pablo Alfredo Sánchez-Pinedaa, Itzel Y. López-Pachecob, 
Angel M. Villalba-Rodríguezb, Reyna Berenice González-Gonzálezc, 
Roberto Parra-Saldívarb, Hafiz M. N. Iqbalb

Abstract: Carbon dots (CDs) have gained popularity in research 
due to their desirable characteristics in electrical, catalytic, 
and optical applications. The exploration of unique carbon sourc-
es with complex chemical compositions can open avenues for 
the straightforward production of multi-doped nanomateri-
als. In particular, prickly pear has distinctive properties and a 
mineral-rich composition, and high production yields under low 
water usage conditions. In this work, prickly pears were used 
to prepare fluorescent green multi-doped CDs through a car-
bonization technique in the presence of nitrogen, phosphorus, 
and nitrogen-phosphorus solutions at 180°C for 7 hours. Re-
sults from different characterization techniques such as Fou-
rier Transform Infrared (FTIR), X-ray diffraction (XRD), UV-vis, 
and ζ Potential demonstrated the functionalization of the sur-
face, semi-crystalline structures, a broad absorbance at the 
UV range with a strong peak at 275 nm, stability in water, and 
negative surface charge of nitrogen-doped carbon dots (NCDs), 
phosphorus-doped carbon dots (PCDs), and nitrogen-phospho-
rus doped carbon dots (NPCDs). Overall, the prickly pear was 
demonstrated to be a suitable source for synthesizing multi-
doped CDs while maintaining nano-synthesis towards sustain-
able and eco-friendly directions. . 
Keywords: Nanomaterials; Nanotechnology; Green Synthesis; 
Carbon Dots.

1. INTRODUCTION

The recent technological advance in material research has highlighted 
the versatility of carbon-based nanomaterials across a wide range of 
applications and forms. Among them, carbon dots (CDs) have raised 
significant interest; they are composed of a carbon core with sp2/
sp3 hybridization and different surface functional groups (Cui et al., 
2021). CDs exhibit advantageous features like high biocompatibili-
ty (Liao et al., 2021), optical properties such as photoluminescence 
(Sabet and Mahdavi, 2019), and great chemical stability enabling a 
variety of potential applications (Liu et al., 2019).

Sensing is one of the most studied applications of CDs, for ex-
ample, CDs have been employed for the sensitive detection of ions 
(Batool et al., 2022), cations (Xu et al., 2015a), and organic molecules 
like glucose (Shan et al., 2014). In addition, bioimaging applications 
have been widely reported because of their excellent optical properties 
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and biocompatibility (Wang et al., 2022). Further-
more, catalytic applications have been achieved due 
to their easy surface functionalization, which has 
been usefully employed for the photocatalysis of 
contaminants (Yao et al., 2022).

An important factor of CDs functionality is their 
surface functionalization, which plays a critical role 
for CDs either to achieve specific characteristics for 
certain applications or to present enhanced perfor-
mances (González-González et al., 2022b). A great 
diversity of dopants have been explored, including 
nitrogen, phosphorous, boron, sulfur, copper, and 
combinations of them (Cárdenas-Alcaide et al., 
2023; Kamali et al., 2021; Najaflu et al., 2022; Sad-
hanala et al., 2021; Tammina et al., 2019; Y. Zhang 
et al., 2018). In this regard, multi-doped CDs have 
demonstrated enhanced characteristics in terms of 
biocompatibility and photoluminescence (Miao et 
al., 2020). The increased capabilities of multi-doped 
CDs have been attributed to superior electron trans-
fer between dopant elements and CDs, resulting in 
radiative electron recombination and holes (Zhu et 
al., 2023).

Eco-friendly and low-cost synthesis techniques 
are currently raising awareness; thus, green precur-
sors have been presented as an excellent alternative 
to pure chemical precursors (González-González et 
al., 2022c). Several waste-based, green, or natural 
precursors have been used for the sustainable syn-
thesis of CDs; some examples include lemon, or-
ange, pepper, and tires, among others (Beker et al., 
2020; González-González, et al., 2022; Humaera et 
al., 2021; Schneider et al., 2019; Vasimalai et al., 
2018). Interestingly, the CDs’ properties are highly 
dependent on the synthesis technique, process con-
ditions, and selected precursors. Therefore, differ-
ent characteristics and applications can be obtained 
by varying the precursor. 

Although green synthesis is defined as the 
avoidance of toxic chemicals through the use of 
plant extracts or natural components, (Upadhyay et 
al., 2019) additional aspects should be considered. 
For example, water utilization needs to be taken into 
account for future green nanomaterials since water 
scarcity and pollution are important issues given 
the recent rise in agriculture and industry (Truong 
et al., 2024). Thus, it is critical to explore water-ef-
ficient sources for the synthesis of nanomaterials to 
improve them in terms of sustainability. In this con-
text, prickly pear is a water-efficient crop because 
its cultivation requires less water than other crops, 
up to 80% less water consumption (Neupane et al., 

2021). Moreover, prickly pear can be an excellent 
source of nanomaterials due to its high content of 
minerals and glucose (Zenteno et al., 2015). Glu-
cose-derived CDs have been synthesized by other 
authors with excellent results (Ezati et al., 2022); on 
the other hand, the high mineral content of prickly 
pear, can result in multi-doped CDs. In this work, 
we explored prickly pear as a green source for the 
production of CDs nanoparticles, and the possibili-
ty of achieving multi-doped CDs in the presence of 
nitrogen, phosphorous, and nitrogen-phosphorous 
medium through a simple carbonization technique. 

2. MATERIALS AND METHODS

2.1. Chemicals/reagents

Prickly pears were purchased from the local market 
to use as a carbon source. L-asparagine and phos-
phoric acid were acquired from Sigma Aldrich for 
their usage as nitrogen and phosphorus sources, 
respectively. Ultra-pure (Milli-Q) water was used 
during the synthesis.

2.2. Preparation of CDs

Prickly pear required a pre-treatment before na-
no-synthesis; first, 1 kg of frozen prickly pear was 
blended and freeze-dried to obtain a fine powder to 
use as a carbon source. CDs were produced in the 
presence of nitrogen, phosphorous, and a combina-
tion of both elements during the synthesis process. 
Thus, 12 g of freeze-dried prickly pear (FDP), used 
as a carbon source, were placed in porcelain cap-
sules, while the dopants were added in concentra-
tions selected from the literature on co-doped CDs 
(Tadesse et al., 2021). Nitrogen-doped carbon dots 
(NCDs) were prepared by adding 0.1g of L-aspar-
agine to one of the capsules containing FDP with 
5 mL of Ultra-pure water to dissolve the mixture. 
Similarly, phosphorus-doped CDs (PCDs) were 
synthesized by adding 10 mL of phosphoric acid 
(0.1M) into one of the capsules containing FDP. 
Finally, nitrogen-phosphorous-doped carbon dots 
(NPCDs) were prepared by adding both nitrogen 
and phosphorous sources at the same concentrations 
as the NCDs and PCDs.

Porcelain capsules were then placed into a Ya-
mato DKN6026C oven at 180°C for 7 hours. Af-
ter cooling down to room temperature, carbonized 
samples were scraped from the capsules using a 
stainless-steel spatula for further centrifugation 
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with 25 mL of Mili-Q water. CDs in suspension 
were then filtered using 0.22 μm filters to finally 
freeze-dried them for analysis and characterization. 

This procedure is shown as a schematic represen-
tation in Figure 1. The process was performed by 
duplicate. 

Figure 1. General methodology for the production of multi-doped carbon dots through simple carbonization 
synthesis using prickly pear as the carbon source. Note: FDP is used for Freeze-dried Prickly Pear and CDs 

for carbon dots. Created with BioRender.com and extracted under premium membership.

2.3. Characterization

Ultraviolet-visible (UV-Vis) absorbance analysis 
was performed using a Lambda 365 instrument 
(PerkinElmer) with a 200-800 nm range, to under-
stand the CDs’ light exposure absorbance behav-
ior. Fourier-transform infrared (FTIR) spectra were 
obtained using a Frontier TM FTIR Spectrometer 
(Perkin Elmer) to understand the chemical bonds in 
the CDs. X-ray diffraction (XRD) patterns were an-
alyzed with a Rigaku Miniflex 600, using a Cu- Kα 
lamp as a radiation source with a current and volt-
age of 15mA and 30Kv to evaluate the crystallinity. 
ζ potential analysis was performed to evaluate sur-
face charge using the phase-analysis light scatter-
ing (PALS) method with a Nanobrook 90 Plus Pals. 

3. RESULTS AND DISCUSSION

UV-vis spectroscopy was utilized to analyze the 
absorption properties of the synthesized CDs. The 
CDs presented absorbance in both UV-B and UV-A 
ranges, which is in agreement with other reports 
(Arroyave et al., 2021; Cárdenas-Alcaide et al., 
2023). As shown in Fig. 1, the absorbance of the 
CDs showcases a peak at around 275 nm, which 
can be associated with orbitals transition (Jiang et 
al., 2020). The difference in dopants creates a vari-
able in the absorbance of the CDs, where NPCDs 
showed a higher absorbance at 275 nm than PCDs, 
as expected from previous works. Nitrogen-doped 
CDs have demonstrated enhanced optical prop-
erties and good dispersibility (Zhou et al., 2019); 
while, phosphorous-doped CDs usually present de-
creased optical properties, but improved stability 
and dispersibility (Kalaiyarasan et al., 2020). Thus, 
it is suggested that the combination of both dopants 

might create CDs with enhanced optical properties 
(Park et al., 2020; Tammina et al., 2019) as can be 
observed in Fig. 2. 

The XRD pattern exhibited peaks at 27°, 22°, 
29°, and 40° (Fig. 3). Interestingly, the XRD pattern 
can be compared with other studies that associate 
the peaks at 29° and 27° as part of a composite of 
carbon with manganese (Rather, 2019). Also, other 
peaks agreed with the potassium-nitrogen-phos-
phorus carbon hollow structure (Xu et al., 2021). 
The presence of these elements can be explained 
by the synthesis process and the presence of sever-
al components of the prickly pear, which included 
manganese and potassium (Cota-Sánchez, 2016). 
NCDs presented clear amorphous hump and crys-
talline peaks, while NPCDs and PCDs presented 
well-defined crystalline peaks and less-defined 
amorphous humps. Overall, the XRD patterns of 
all synthesized CDs did not present a well-defined 
crystalline or amorphous structure, indicating a 
semi-crystalline structure. This type of semi-crys-
talline CDs has reported improved optical proper-
ties (Xu et al., 2015b), which might be used for bio-
imaging applications.

In addition, all three samples presented differ-
ent intensities and shifts of their crystalline peaks, 
which can be associated with pH variations caused 
by the nitrogen and phosphorous sources added 
during the synthesis. Although the precise nucle-
ation process of the simple carbonization synthesis 
performed in this study is not yet clear, other meth-
ods like hydrothermal and pyrolysis have reported 
that pH and mineral composition of samples are key 
factors during the CDs’ nucleation (De and Karak, 
2013; Hu et al., 2015; Qu et al., 2014). Thus, such 
variations may lead to the transformation of mineral 
contents, generating nucleation differences.
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Furthermore, the formation of amorphous 
phases is in agreement with other studies, for ex-
ample, glucose-derived CDs through hydrothermal 
technique reported the nucleation of CDs through 
a nucleation-polymerization process; the presence 
of crystalline CDs surrounded by an amorphous 

carbon matrix was confirmed by TEM (Papaioan-
nou et al., 2018). In addition, the differences found 
in the crystalline peaks and their shifts could be ex-
plained by the pH differences of the synthesis me-
diums and the mineral content of the prickly pear 
causing variations during the nucleation.

Figure 2. UV-visible absorption spectra of green synthesized prickly pear carbon dots  
n solutions rich in nitrogen (NCDs), phosphorus (PCDs), and nitrogen-phosphorus (NPCDs).

Figure 3. XRD spectra of green prickly pear-derived carbon dots doped with nitrogen (NCDs), phosphorus 
(PCDs), and nitrogen-phosphorus (NPCDs) multi-doped carbon dots showing peaks at 27°, 22°, 29°, 40°.
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To identify the components of the CDs, FTIR 
spectra were obtained for all CDs samples. The sur-
face chemistry of all CDs samples differs between 
them in terms of peak position and intensity, as can 
be observed in Fig. 4. Different band gaps confirmed 
the proper formation of CDs and the nitrogen attach-
ment to the CDs’ surface; N–H, C–H, C=O, C=C, 
C—N, C—O were confirmed by the presented band 
gaps at 3200 cm–1, 1650 cm–1, 1580 cm–1, 2925 cm–1, 
1420 cm–1, and 1024 cm–1, respectively (Beker et al., 

2020). Furthermore, weak peaks at 880 cm–1 and the 
broad gap at 1370 cm–1 suggested the presence of 
P-O and P=O in PCDs and NPCDs (Shangguan et 
al., 2017; Tammina et al., 2019). Other weak peaks 
can be observed, it is suggested that those peaks are 
caused because of the natural complex composition 
of prickly pear which is minerals-rich (Zenteno. et 
al., 2015). This mineral-rich composition of FDP 
sample —and its contribution to the CDs’ composi-
tion— was confirmed with its FTIR spectra.

Figure 4. FTIR spectra of freeze-dried prickly pear (FDP) and their derived carbon dots 
doped with nitrogen (NCDs), phosphorus (PCDs), and nitrogen-phosphorus (NPCDs).

Table 1 shows the results of the ζ potential in-
dicating negative surface charge of all three CDs 
samples. The negative charge might be attributed to 
the presence of hydroxyls and carbonyl groups pre-
sented on the surface of the CDs, which is in agree-
ment with the FTIR results and literature (Bao et 
al., 2018; González-González, et al., 2022; Mondal 
et al., 2018). 

The ζ potential analysis was performed after 
two months of synthesis. NPCDs, PCDs, and NCDs 
samples were suspended in Milli-Q water showing 
high hydrophilic characteristics and no agglom-
erations after two months. The 휁 potential values 
and the observed hydrophilic characteristics are 
similar to those reported in other studies, in which 

multi-doped CDs samples presented values below 
–10 mV with negative surface charges, good stabili-
ty in neutral solutions, and high hydrophilic charac-
teristics (Chandra et al., 2018; Qu et al., 2020; Singh 
et al., 2018; L. Zhang et al., 2019). 

Sample ζ potential (mV)
Nitrogen-doped 

carbon dots -3.48 ± 0.67

Phosphorus-doped 
carbon dots -8.83 ± 3.39

Nitrogen-phosphorus 
multi-doped carbon dots -0.45 ± 0.24

Table 1. ζ potential results of prickly 
pear-derived carbon dots
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4. CONCLUSIONS

It is important to consider the current issues re-
garding water and resource scarcity for the proper 
selection of precursors for the synthesis of nano-
materials, thus, nano-synthesis research can be 
oriented towards greener directions. This study 
aims to evaluate the employment of prickly pear 
as a natural source of nanomaterials by taking ad-
vantage of its interesting chemical composition. 
Thus, multi-doped carbon dots were synthesized 
through a one-pot, simple, and low-cost synthesis 
procedure using prickly pear as the carbon source 
due to its natural high glucose content and its in-
teresting mineral content. The synthesized carbon 
dots demonstrated the potential of prickly pear 
as an excellent carbon source for the synthesis of 
multi-doped CDs. They exhibited a high carboxyl 
functionalization on their surface, which was con-
firmed by the FTIR technique and ζ potential re-
sults. Their characteristics seem suitable for cata-
lytic applications; however, further studies must be 
developed to evaluate and understand the catalytic 
effect of the dopant elements. Furthermore, this 
simple synthesis of carbon dots opened the possi-
bility of studying the synthesis of self- and multi-
doped carbon dots avoiding the usage of dopant 
sources to explore the natural mineral content of 
prickly pear fruits to achieve self-surface function-
alization. The semi-crystalline general structure of 
the carbon dots was confirmed by XRD; in addi-
tion, carbon dots showed good optical properties 
according to UV-Vis technique. Further research 
should be conducted in this direction to shed light 
on the functionality of sustainable multi-doped 
carbon dots.
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