REVIEW ARTICLE

Recent updates on g-C$_3$N$_4$/ZnO-based binary and ternary heterojunction photocatalysts toward environmental remediation and energy conversion

Parul Rana, Sonu, Priya Dhull, Anita Sudhaik, Akshay Chawla, Van-Huy Nguyen, Savaş Kaya, Tansir Ahamad, Pardeep Singh, Chaudhery Mustansar Hussain, Pankaj Raizada

a School of Advanced Chemical Sciences, Shoolini University, Solan, HP 173229, India
b Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram District, 603103, Tamil Nadu, India
c Sivas Cumhuriyet University Health Services Vocational School Department of Pharmacy 58140 Sivas Turkey
d Department of Chemistry, College of Science, King Saud University, Saudi Arabia
e Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA

*Corresponding author: Pankajchem1@gmail.com (P. Raizada); Pardeepchem@gmail.com (P. Singh)

© The Author(s), 2023

Highlights
- The properties of g-C$_3$N$_4$ and ZnO as photocatalytic materials were discussed.
- Several modification strategies were explored to improve photocatalytic performance.
- Synergistic effect among g-C$_3$N$_4$/ZnO boosted charge separation and light responsiveness.
- g-C$_3$N$_4$/ZnO-based nanocomposite exhibited reduced agglomeration and photocorrosion for longevity.
- Photocatalytic applications of g-C$_3$N$_4$/ZnO-based photocatalysts were explored.

Abstract
Background: The utilization of photocatalytic materials has garnered significant consideration due to their distinctive properties and diverse applications in environmental remediation and energy conversion. In photocatalysis, several wide and narrow band gap photocatalysts have been discovered. Amongst several photocatalysts, g-C$_3$N$_4$ photocatalyst is becoming the interest of the research community due to its unique properties. But as a single photocatalyst, it is inherited with certain confines for instance higher photocarrier recombination rate, lower quantum yield, low specific surface area, etc. However, the heterojunction formation of g-C$_3$N$_4$ with other wide band gap photocatalysts (ZnO) has improved its photocatalytic properties by overcoming its limitations.

Methods: The synergistic interaction amid g-C$_3$N$_4$ and ZnO photocatalysts enhanced optoelectrical properties superior mechanical strength and improved photocatalytic activity. The nanocomposite exhibits excellent stability, high surface area, efficient separation, and migration of photocarriers, which are advantageous for applications in photocatalytic energy conversion and environmental remediation. The g-C$_3$N$_4$/ZnO nanocomposite represents a material comprising g-C$_3$N$_4$ and ZnO photocatalysts which exhibit a broad absorption range, efficient electron-hole separation, and strong redox potential. The combination of these two distinct materials imparts enhanced properties to the resulting nanocomposite, making it suitable for various applications. Henceforth, current review, we have discussed the photocatalytic properties of g-C$_3$N$_4$ and ZnO photocatalysts and modification strategies to improve their photocatalytic properties.

Significant Findings: This article offers an inclusive overview of the g-C$_3$N$_4$/ZnO-based nanocomposite, highlighting its photocatalytic properties and potential applications in several pollutant degradation and energy conversion including hydrogen production and CO$_2$ reduction.
Keywords: Photocatalysis; g-C₃N₄; ZnO; Pollutant degradation; Hydrogen production; CO₂ reduction.

Article history:
Received: 24-09-2023
Revised: 02-11-2023
Accepted: 15-12-2023

1. Introduction
Wastewater effluents from industrial pilot plants and country farmland are significant contributors to the pollution of natural water with poisonous organic chemical substances, such as organic colors and pesticides, contributing to the global crisis (Karri et al., 2021; Pandey et al., 2021). The escalating water pollution crisis threatens aquatic ecosystems and human health, while the unsustainable energy consumption crisis exacerbates environmental degradation and climate change. Humanity may face a shortage of potable water as a result of climate change and global warming, in addition to the impacts caused by human actions (Belhassen, 2021). Due to water shortages caused by climate change and bad water resource management, the adoption of water recycling and reuse has gained fast focus worldwide in recent years. Adsorption, membrane separation, and coagulation are just some of the methods used to clean water and get rid of organic pollutants, however, they only consolidate or transform the toxins into a solid form rather than getting rid of them (Shrestha et al., 2021). Therefore, renewing the adsorbents and handling the secondary contaminants at an additional expense is necessary (Li et al., 2019; Vinayagam et al., 2022; Younas et al., 2021). To get rid of persistent organic contaminants, particularly those with poor biodegradability, advanced oxidation processes (AOPs) have been suggested (Badmus et al., 2018). In AOPs, the generation of •OH (hydroxyl radicals) and the regeneration of ions determine the pace of the degradation/oxidation process (Nidheesh et al., 2022; Titchou et al., 2021). Hydroxyl (•OH) radicals are powerful oxidants that can oxidize even the most resistant chemical substances. AOPs have many benefits, including (i) a high rate of decomposition, (ii) the conversion of organic compounds to environmentally friendly products, (iii) the ability to function in environments with low temperature and pressure as well as (iv) reduction of organic compounds' toxicity (Liu, L. et al., 2021).

In recent years, the field of photocatalysis has gained significant attention due to its potential applications for environmental pollution and energy sustainability (Chawla et al., 2023). Photocatalysis is a process in which light energy is used to initiate chemical reactions by exciting the valence band (VB) electrons of a photocatalyst material to higher energy levels i.e. conduction band (Ameta et al., 2018). Once the electrons are excited, they can participate in redox reactions, resulting in the photodegradation of pollutants or the production of clean energy sources. The efficiency and effectiveness of photocatalysis depend on several factors, including the band structure, charge carrier dynamics, and surface properties of the photocatalytic materials (Gupta, 2017). Photocatalytic materials, which can harness solar energy to drive chemical reactions, have emerged as promising candidates for various applications, including wastewater treatment, air purification, and solar fuel production (Bai et al., 2019; Coronado et al., 2013). Silver nanoparticles and gold nanoparticles are nanomaterials known for their exceptional photocatalytic properties to remove pollutants from wastewater (Kumar, 2021). When exposed to light, they can initiate photocatalytic degradation of various waste materials via surface plasmon resonance. These nanoparticles harness the energy from photons to generate reactive species, which efficiently break down the waste into harmless by-products, making them promising candidates for eco-friendly wastewater treatment and environmental remediation processes. Similarly, various natural green materials like chitosan, graphene, and cellulose-based derivatives are increasingly utilized in photocatalysis (Ambaye et al., 2022; Chauhan et al., 2023; Dutta et al., 2019; Zheng et al., 2022). These materials serve as excellent support matrices for photocatalysts, enhancing their stability and recyclability. They offer eco-friendly alternatives that can efficiently harness solar energy to drive chemical reactions for environmental remediation and energy production, promoting sustainability in photocatalytic applications. TiO₂ was first discovered in photocatalysts which has received the most research attention over the past several decades (Yan et al., 2015). It has been widely used in the photodegradation of...
organic compounds under UV light sources because of its low fabrication cost and good chemical stability (Pant et al., 2019). For instance, Zhu and his co-workers synthesized In$_2$S$_3$ decorated with TiO$_2$ metastable phase of titania for the degradation of tetracycline (Zhu, C. et al., 2022b). With a removal efficiency of 97.3%, the S-scheme In$_2$S$_3$/TiO$_2$ composite outperformed TiO$_2$ and In$_2$O$_3$ by 3.2 and 2.1 times, respectively. The S-scheme also preserves active sites for catalysis and delivers an internal electron channel at the interface. In another work to remove oxytetracycline hydrochloride photocatalytically, we design and build edge-rich bicrystalline 1T/2H-MoS$_2$ nanosheet co-catalyst modified V-doped hierarchical TiO$_2$ microspheres (Zhu, C. et al., 2022a). An all-solid-state Z-scheme heterostructure is produced by the effective electron mediation provided by the metallic 1T phase of MoS$_2$. The V-TiO$_2$/1T/2H-MoS$_2$-5% heterojunction exhibits remarkable performance with a 92.4% photodegradation rate by concurrently boosting electron-hole separation, increasing reactive radical generation, expanding visible light absorption, and improving reactant adsorption capacity. According to Wang et al., the wide band gap (3.2 eV) and poor quantum efficiency of TiO$_2$ severely limit its use in solar energy applications. Besides TiO$_2$, different kinds of photocatalytic materials have been discovered which have been categorized into narrow and wide band gap photocatalysts (Jiang et al., 2018; Liu, J. et al., 2021; Zhu, L. et al., 2018). Among these materials, the combination of graphitic carbon nitride (g-C$_3$N$_4$) and zinc oxide (ZnO) has garnered considerable interest as a nanocomposite nanomaterial with enhanced photocatalytic performance and versatility (Lee et al., 2022; Sayed et al., 2022; Sun et al., 2022).

g-C$_3$N$_4$ (metal-free photocatalyst) is one of the most potentially visible-light-responsive materials that have a cheap cost, environmental tolerance, good stability, and simple production (Abu-Sari et al., 2023; Rajeshwari et al., 2022). Furthermore, it contains carbon and nitrogen atoms arranged in a two-dimensional layered structure, resembling graphene (Wang et al., 2020). The electronic band structure of g-C$_3$N$_4$ allows it to absorb visible light, enabling efficient utilization of solar energy. The small band gap (2.7 eV) of g-C$_3$N$_4$ allows it to make better use of solar energy (Dutta et al., 2023; Hayat et al., 2022). A polymeric carbon nitride material has appeared as a popular choice for photocatalytic applications due to its unique electronic structure and chemical stability (Kumar et al., 2023; Wei et al., 2022). For example, Le et al. successfully synthesized the S scheme V$_2$O$_5$/g-C$_3$N$_4$ for eliminating harmful antibiotic residues with an efficiency of 91.3% (Le et al., 2022). An internal electron channel is provided at the interface by the V$_2$O$_5$/g-C$_3$N$_4$ S-scheme structure, which also keeps the active sites with high photodegradation potentials. Our research provides strong V$_2$O$_5$/g-C$_3$N$_4$ S-scheme nanocomposite for environmentally friendly water filtration. Additionally, high chemical and thermal stability make g-C$_3$N$_4$ suitable for various reaction conditions. On the other hand, ZnO, a wide-bandgap semiconductor, has long been recognized as a photocatalyst with excellent properties. ZnO is an n-type silicon oxide like TiO$_2$, but it has received less attention in the past. Since, ZnO shares the same energy gap energy as TiO$_2$ but, displays greater absorption efficacy across a significant portion of the solar spectrum, it has been suggested as a replacement photocatalyst for TiO$_2$. ZnO possesses a direct band gap energy that allows the absorption of ultraviolet (UV) light, making it highly effective in harnessing solar radiation (Bulcha et al., 2021). Owing to the aforementioned unique and advantageous properties, both g-C$_3$N$_4$ and ZnO photocatalysts have been considered efficient materials for environmental remediation, but as a single photocatalyst, they exhibit several limitations that affect their photocatalytic performance. However, the photoefficiency of g-C$_3$N$_4$ and ZnO photocatalysts in photocatalysis is constrained by several issues. For instance, g-C$_3$N$_4$ has restricted photocatalytic activity, narrow light absorption range, charge carriers fast recombination, poor stability, and lower specific surface area (Pattanayak et al., 2023), etc. Similarly, ZnO as a wide band gap photocatalyst also has certain constraints such as charge carriers recombination rate, limited selectivity, restricted light absorption range (absorption of UV spectrum), photocorrosion and material degradation, etc. which have limited its photocactivity (Ahmad et al., 2022). In visible light, both materials could only show a small amount of photocatalytic activity. Long-term efficiency may also be impacted by their photocorrosion and stability in challenging environments. Moreover, these photocatalysts’ total catalytic effectiveness may be hampered by the recombination of photogenerated electron-hole pairs, therefore it is imperative to discover practical ways to alleviate these constraints.

Therefore, the integration of g-C$_3$N$_4$ and ZnO represents a remarkable combination of semiconductors with distinct advantages. By combining g-C$_3$N$_4$ and ZnO, a nanocomposite nanomaterial is formed, harnessing the

Nanofabrication
https://doi.org/10.37819/nanofab.8.1774
individual strengths of each component (Ma et al., 2019). Various synthesis methods, such as solvothermal methods, hydrothermal synthesis, and co-precipitation techniques, have been employed to fabricate g-C$_3$N$_4$/ZnO-based nanocomposite with controlled morphology, composition, and surface properties (Kumareshan et al., 2020; Liu et al., 2019; Luu Thi et al., 2021; Yu, T. et al., 2022). The combined effects between g-C$_3$N$_4$ and ZnO lead to enhanced photocatalytic performance, extended light absorption range, improved charge separation, and increased surface area for active sites, making it a promising candidate for environmental and energy applications. The unique band structures of g-C$_3$N$_4$ and ZnO allow the absorption of both visible and UV light, enabling efficient exploitation of solar energy across a broad spectrum (Jung et al., 2019). This broad light absorption range is crucial for practical applications, as it maximizes the utilization of sunlight, which is the most abundant and sustainable energy source available. Moreover, the favorable band positioning between g-C$_3$N$_4$ and ZnO promotes efficient charge separation, reducing the chance of recombination between photogenerated electron-hole pairs. This charge separation efficiency significantly enhances the photocatalytic activity and contributes to improved reaction rates (Liu, B. et al., 2021; Sayed et al., 2022). Additionally, the large surface area of the nanocomposite nanomaterial provides abundant active sites for organic/inorganic pollutant adsorption, increasing the opportunities for catalytic reactions. The versatile nature of g-C$_3$N$_4$/ZnO nanocomposite extends their applicability to various environmental and energy-related domains (Huang et al., 2021; Liu, B. et al., 2021; Sayed et al., 2022).

Here, in this article, we provide a high-level introduction to g-C$_3$N$_4$-based ZnO photocatalyst so that readers can grasp the fundamentals of microstructural matching between g-C$_3$N$_4$ and ZnO for photocatalytic activity. In this context, g-C$_3$N$_4$ and ZnO-based photocatalytic materials have been discovered with their potential applications for pollutant degradation and energy conversion (Alharthi et al., 2020; Liu, J. et al., 2020). By harnessing solar energy, these materials can effectively degrade organic pollutants and convert harmful compounds into harmless substances (Sun et al., 2022; Zhang, S. et al., 2019). The unique properties of g-C$_3$N$_4$/ZnO nanocomposite make them highly effective in various energy conversion processes, including water splitting, hydrogen production, and carbon dioxide reduction (Ge et al., 2023; Liu, B. et al., 2021; Sayed et al., 2022). The synthesis and engineering of g-C$_3$N$_4$/ZnO-based nanocomposites offer a wealth of opportunities to tailor their properties for specific applications (Liu et al., 2018). These approaches allow for the optimization of material characteristics, such as band gap engineering, surface area, and charge carrier dynamics, to achieve superior photocatalytic performance. Moreover, the incorporation of dopants and co-catalysts further enhances the activity and selectivity of g-C$_3$N$_4$/ZnO nanocomposite, providing additional avenues for material design (Qamar et al., 2022; Sun et al., 2019).

In conclusion, g-C$_3$N$_4$/ZnO nanocomposite holds immense promise for environmental and energy applications. Their unique properties, synergistic effects, and versatile fabrication methods make them ideal candidates for addressing the challenges of environmental remediation.

2. g-C$_3$N$_4$ (g-CN) photocatalyst

Ground-breaking research by Wang and co-workers on visible-light photo-catalytic water splitting over graphitic carbon nitride (g-CN) in 2009, g-CN has received a great deal of interest. It is generally agreed that, among the numerous carbon nitrides, g-CN is the highest balanced allotrope when exposed to room temperature and humidity (Sudhaik et al., 2023). Fig. 1 demonstrates its suggested structure of tri-s-triazine two-dimensional frameworks linked by tertiary amines, g-CN is both chemically (at room temperature) and thermally (up to 600°C in the atmosphere) stable (Wang et al., 2012). A polymeric metal-free photocatalyst, g-CN is being investigated for its potential use in the breakdown of organic contaminants in water. With its excellent chemical and thermal stability, sensitivity to visible light, and adequate band gap (2.7 eV), g-CN is a cost-effective photocatalyst that has been extensively employed for carbon dioxide (CO$_2$) reduction, hydrogen (H$_2$) evolution, organic synthesis, and organic pollutant elimination. This makes g-CN the undisputed leader in photocatalysis very instantly. There are several remarkable qualities of g-CN, including non-toxicity, stability, cheap cost, an acceptable energy gap, and visible-light absorption (Malik et al., 2021). Nonetheless, pure g-CN still has several flaws like low quantum yield, charge recombination, poor conductivity, etc., hence it is sometimes altered (Sharma et al., 2022). Melamine or dicyandiamide thermal polycondensation/polymerization is a straightforward production process that yields g-CN. The process of thermal polymerization of urea may also be used to fabricate g-CN. Thermal polycondensation of melamine or dicyandiamide releases several harmful gases that might damage the environment, yet the process
is straightforward (Barrio et al., 2020). Unfortunately, the yield from urea thermal polymerization is low, and both the calcination environment and the temperature are strict. The use of g-CN as a photocatalyst for the degradation of MO and rhodamine B (RhB) has been the subject of many published works (Fan et al., 2022; Liu, N. et al., 2020; Yu, B. et al., 2022). For photodegradation, the holes and electrons are responsible, which breaking down dyes despite their high recycling efficiency and long-term stability. Bare g-CN has poor photocatalytic degradation capability because photogenerated e–h+ charge carriers recombine at a high rate. To boost its photocatalytic capabilities, g-CN has been tested with a wide variety of additives in the past. They include Bi2MoO6, Ag3PO4, BiOBr, Bi2Sn2O7, BiVO4, BiOCl, and ZnO among others (Zhang et al., 2018). The photocatalytic efficacy of g-CN has been enhanced in a variety of ways, including doping, crystal phase and facet management, and heterojunctions.

Fig. 1: Structure of g-CN s-triazone (upper) and tri-s-triazone (down). Adapted with permission from Elsevier (License No. 5583571189510) (Wang et al., 2012).

2.1. Doping
Photocatalytic capabilities for dye removal have been boosted by doping g-CN with various elements (Fronczak, 2020). Boron-doped mesoporous carbon nitride has been used, for instance, to detoxify malachite green. Doping with 1% boron was the most effective. At room temperature, response surface methods projected that 18 mg of this sorbent would be able to remove 20 mg/L. Here, boron doping altered the electrical arrangement of g-CN, leading to an extreme density of surface charge. The strong acid–base contact between boron and g-CN presents a promising potential for basic dyes due to boron’s Lewis acidic nature (Azimi et al., 2019). To break down various dyes, boron has been doped with g-CN using a variety of techniques, including thermal and solvothermal ones (Sivaprakash et al., 2021). Carbon doping, like boron doping, increases interaction and electrostatic attraction and leads to better degradation and adsorption of colors in wastewater. The maximum absorption of 57.87 mg/g within 300 min was reported by Ren et al. (Ren et al., 2018). They utilized a C-doped g-CN photocatalyst for MB degradation. The reported C-doped g-CN composite revealed much higher photocatalytic efficacy than any other g-CN photocatalyst investigated to date, as shown in Fig. 2a. After that Phosphorus-doped g-CN has recently deteriorated MB. At pH 8, 60 min at 18 ºC, with an initial concentration of MB 0.07 resulted in a maximum
adsorption efficiency of 100 mg/g (Chegeni et al., 2020). The observed dye adsorption efficiency was much greater than that of carbon- and boron-doped g-CN. Oxygen doping in the g-CN lattice, for instance, may change the electron and energy band structure, therefore it can be used to improve g-CN efficiency. By doing so, we may expand the surface area, enhance the responsiveness to visible light, and better segregate photogenerated charge carriers. Doped g-CN was generated by Yang and Bian using a nitric acid ultrasonication technique, and it was able to degrade Rhodamine B by up to 93.88% after 2 hours and 100% after 3 h, in the occurrence of UV-light as shown in Fig. 2(b-d) (Yang et al., 2021). Singlet oxygen, an additional effective portion in the redox process necessary for the breakdown of dye, was shown to be responsible for the improved photocatalytic efficacy. g-CN doped with non-metals such as sulfur and phosphorous has formed heterojunctions, improving the material's photodegradation properties.

2.2. Structure facet and phase control

Structure facets and phases may be manipulated to modify the band gap and improve the photocatalytic characteristics of the material, which can be used alone or in conjunction with composite creation. Folded nonporous g-CN with improved energy band, crystal structure, and microstructure have been synthesized from urea using the calcination process modification to degrade MB as demonstrated in Fig. 3a (Li et al., 2017). Decreased thickness, high porosity, and increased specific surface area (SSA) (197 m²/g) were the outcomes of using g-CN in this way. At temperatures between 450 °C and 500 °C, these characteristics were observed to improve. When heated to a further 550 °C, the pore structure vanished, and the material thinned out. This
developed catalyst demonstrated a photocatalytic degradation rate for MB that was 9.9 times greater than bulk g-CN, with an efficiency of MB degradation reaching 98.5% after just 3 h (Fig. 3b). Folded g-CN had better performance, but it took too long to decompose the dye to be practical. The thermal polymerization process reaction of melamine crystals created from a re-crystalline method obtained from transition metal ions led to the production of g-CN nanotubes, which enhanced the poor charge efficiency of g-CN. The produced crystals had a regular size of 20 nm on average, with facet (002) development being limited and other promising facets corresponding to (011), (210), and others showing promise (311). For improved photocatalytic activity, the crystal structure of g-CN was modified by the assignment of a tubular structure to it by changing metal ions. The axial direction of electron transmission is enhanced by a tubular shape (Jiang et al., 2019). Ag inclusion with g-CN via 8 h. of calcination has a similar effect on crystallinity. An impressive MO degradation efficiency of 98% in 2 h was observed with the resultant Ag/CN-8 as demonstrated in Fig. 3(e-d) (Liu, R. et al., 2020). The dispersibility of silver, SSA, and recombination rate of photoexcited e-·h+ were all improved by the calcination process, which also increased the visible light responsiveness.

Fig. 3: (a) Schematic representation of photodegradation of MB dye, (b) At various time intervals UV-visible spectra of MB dye degradation, Adapted with permission from Elsevier (License No. 5583631341989) (Li et al., 2017), (c) Schematic illustration of photodegradation of 4-NP, (d) photodegradation 4-NP dye under visible light within 120 min, Open access (Liu, R. et al., 2020).

2.3. Heterojunction
To boost the photodegradation efficiency of g-CN, researchers are working on heterojunction systems in which the oxidation and reduction capacities are enhanced by increasing the negative charge carrier binding energy of one component and increasing the positive charge carrier binding energy (VB) of another. Improved photocatalysis is achieved by using heterojunctions with components that have superior adsorption properties (He et al., 2018; Xu et al., 2019). To this end, it is crucial to develop and produce heterojunction-based photocatalysts with enhanced adsorption and degrading capabilities. La2Ti2O7 was engaged to improve the heterojunction characteristics for better photocatalytic efficacy (Wang, F. et al., 2017). La2Ti2O7 have E_{CB} and E_{VB} around 0.39
eV and 3.33 eV band edges respectively are in good resonance with those of g-CN, facilitating the transfer of electrons from g-CN to La$_2$Ti$_2$O$_7$ as shown in Fig. 4a. As a consequence, these highly reducible electrons are used to generate a greater variety of active species. An effective composite photocatalyst for MB was created using g-CN and La$_2$Ti$_2$O$_7$. Hydrothermal synthesis of La$_2$Ti$_2$O$_7$ nanosheets and muffle furnace pyrolysis of melamine were employed to produce g-CN particles. Using a wet-impregnation technique, researchers designed a composite of g-CN powders and La$_2$Ti$_2$O$_7$ nanosheets with improved photocatalytic activity (90% MB was degraded in 2 h) as demonstrated in Fig. 4b. Yet, although the effectiveness was high, the time spent on it was excessive. Radical and hole-trapping studies were performed to study the function of active species (’O$_2$’, •OH, h$^\cdot$). Using the radical-quenching agent’s isopropanol (IPA), Na$_2$CO$_3$, and benzoquinone (BQ), the researcher demonstrated that ’O$_2$’ and h$^\cdot$ play an active part in the photocatalytic process. While TiO$_2$ is already a remarkable photocatalyst on its own, combining it with g-CN would likely boost its effectiveness even more, making it an ideal material for the photocatalytic destruction of organic contaminants. Fabrication of TiO$_2$ using MOF MIL-125 and preparation of g-CN through melamine were accomplished by Jia et al. Using the calcination technique, they created a Z-scheme g-CN/TiO$_2$ nanocomposite (Jia et al., 2020). Photodegradation of MB by g-CN/TiO$_2$ nanocomposite was shown to be more effective than using either TiO$_2$ or g-CN. After testing various concentrations of g-CN, we found that 8wt% produced the highest efficiency (97.7%) in less than 150 min as shown in Fig. 4c-d. As compared to g-CN, photocatalytic efficiency was enhanced, but it was still subpar. Subsequently, to effectively decompose RhB, MB, and BPA through photocatalysis when exposed to visible light, Sun and co-workers fabricated a new g-CN/Bi$_2$O$_3$ Z-scheme heterojunction (Sun et al., 2017). These g-CN powders originated from a muffle furnace thermal polycondensation of melamine. The hydrothermal approach was used to create Bi$_2$O$_3$, and the calcination process was used to generate a composite with an increasing amount of g-CN. When g-CN was increased by another 10–30%, the photocatalytic performance improved, but the activity towards the destruction of dyes was observed to decrease at this point as demonstrated in Fig. 4g. Band gap narrowing in Bi$_2$O$_3$ and g-CN is responsible for the enhanced activity. By the interfacial heterostructure, electrons from Bi$_2$O$_3$ VB are transferred to CB, where they are excited, and then on to the VB holes in g-CN as demonstrated in Fig. 4h. Consequently, due to CB potential of g-CN (-0.95 eV) is more negative than that of O$_2$/O$_2^-$ (-0.33 eV), dissolved molecular oxygen reacts with CB of g-CN electrons to create ’O$_2$’. Nevertheless, the VB potential of Bi$_2$O$_3$ (+ 2.52 eV) is more than •OH/OH (+1.99 eV), and holes in VB of Bi$_2$O$_3$ oxidize OH to •OH. The close relationship between g-CN and Bi$_2$O$_3$ was uncovered utilizing XRD, TEM, and SEM. Almost 90% dye degradation within 90 min by Bi$_2$O$_3$/g-CN which is a long time and should be shortened. Table 1 shows the results of new research into the use of g-CN in combination with metal oxides and metal-organic frameworks for the effective degradation of pigments in water.

Due to their distinct electronic structures and malleable structural geometries metal oxides have recently emerged as a favorable material with significant potential as a photocatalyst. These characteristics allow them to function as semiconductors, metals, and insulators, respectively (Nemival et al., 2021). Due to their cheap manufacturing cost, chemical stability, and ecologically benign, ZnO is the most researched compound among semiconductors for its use in dye-sensitized solar cells, photo-electrocatalysis of water, and environmental remediation. Yet their high band gap and poor quantum efficiency limit their use. Composite creation, dye sensitization, doping, metal/non-metal deposition, and surface modification are just some of the alterations that have been made to enhance photocactivity in the visible spectrum.
Fig. 4: (a) Photodegradation efficacy of MB dye by fabricated nanoparticles, (b) Schematic diagram of photodegradation MB dye through heterojunction, Adapted with permission from Elsevier (License No. 558364019845) (Wang, F. et al., 2017), (c) Photodegradation efficacy of MB dye using fabricated nanoparticles, (d) Schematic illustration of photodegradation MB dye through heterojunction, Adapted with permission from Springer (License No. 501828549) (Jia et al., 2020), (e) Photodegradation efficacy of MB dye by fabricated nanoparticles, and (f) Schematic illustration of photodegradation MB dye through heterojunction, Adapted with permission from Elsevier (License No. 5583641221023) (Sun et al., 2017).
Table 1. Dye deterioration using a novel heterojunction of g-CN-based photocatalysts has recently found extensive application.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Photocatalyst</th>
<th>Duration (min)</th>
<th>Pollutant</th>
<th>Degradation efficacy (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ag₃PO₄/g-CN</td>
<td>20</td>
<td>RhB</td>
<td>99.98</td>
<td>(Deonikar et al., 2019)</td>
</tr>
<tr>
<td>2.</td>
<td>WO₃@g-CN</td>
<td>90</td>
<td>RhB</td>
<td>99.5</td>
<td>(Borthakur et al., 2020)</td>
</tr>
<tr>
<td>3.</td>
<td>g-CN/H-ZSM-5</td>
<td>120</td>
<td>MB</td>
<td>92.7</td>
<td>(Barman et al., 2020)</td>
</tr>
<tr>
<td>4.</td>
<td>ZnO-Modified g-CN</td>
<td>80</td>
<td>MB</td>
<td>97</td>
<td>(Paul et al., 2020)</td>
</tr>
<tr>
<td>5.</td>
<td>g-CN/Bi₂O₅</td>
<td>90</td>
<td>MB</td>
<td>90</td>
<td>(Sun et al., 2017)</td>
</tr>
<tr>
<td>6.</td>
<td>g-CN/Ag₃VO₄/β-AgVO₃/Ag</td>
<td>30</td>
<td>MB</td>
<td>95.5</td>
<td>(Joseph et al., 2019)</td>
</tr>
<tr>
<td>7.</td>
<td>g-CN/Co-MOF</td>
<td>80</td>
<td>CV</td>
<td>95</td>
<td>(Devarayapalli et al., 2020)</td>
</tr>
<tr>
<td>8.</td>
<td>LaFeO₃/g-CN</td>
<td>60</td>
<td>BB</td>
<td>100</td>
<td>(Wu et al., 2018)</td>
</tr>
<tr>
<td>9.</td>
<td>BiOCOOH/ g-CN</td>
<td>120</td>
<td>Amido black 10B</td>
<td>89.16</td>
<td>(Cui et al., 2019)</td>
</tr>
<tr>
<td>10.</td>
<td>CeO₂/CNS</td>
<td>150</td>
<td>MB</td>
<td>91.4</td>
<td>(Jourshabani et al., 2017)</td>
</tr>
<tr>
<td>11.</td>
<td>CdS/CQDs/g-CN</td>
<td>20</td>
<td>RhB</td>
<td>100</td>
<td>(Feng et al., 2020)</td>
</tr>
<tr>
<td>12.</td>
<td>MoS₂QDs/ g-CN</td>
<td>40</td>
<td>MO</td>
<td>96.3</td>
<td>(Shi et al., 2018)</td>
</tr>
<tr>
<td>13.</td>
<td>BiOI@UIO-66(NH₂) @g-CN</td>
<td>80</td>
<td>RhB</td>
<td>95</td>
<td>(Liang et al., 2018)</td>
</tr>
</tbody>
</table>

3. ZnO photocatalyst
Zinc oxide, or ZnO, is a very rare inorganic substance found in nature as the mineral zincite. It crystallizes into three different shapes: hexagonal wurtzite, cubic zinc blende, and cubic rock salt. ZnO often takes the wurtzite form, while rock salt and zinc blende are also infrequently seen (Batra et al., 2022; Morkoç et al., 2008). These latter structures are very metastable and hard to come by since they need high pressure and regulated development on cubic substrates. At room temperature and pressure, the hexagonal wurtzite phase is the most stable of all phases thermodynamically (Pathania et al., 2021). Due to its improved tendency to crystallize in wurtzite form, ZnO has had the best photocatalytic efficiency focused on photocatalytic characteristics. ZnO crystalline formations are shown in Fig. 5 as a ball-and-stick model, with yellow spheres standing in for Zn atoms and blue spheres for O atoms (Özgür et al., 2013). Because of its potential to affect their behavior, nanomaterials' crystalline structure is an important characteristic. The band structure and optical transparency of ZnO, two crucial physicochemical features, are dictated by the atomic or molecular arrangement in a crystalline solid (Tudose et al., 2019).

In hexagonal wurtzite structure lattice parameters, a and c are 0.3296 and 0.52065 nm respectively (Baruah et al., 2009). Hexagonal sub lattice patterns are often used to illustrate the layered structure of the wurtzite ZnO, which consists of Zn$^{2+}$ and O$^{2-}$ ions alternatingly stacked along the c-axis. On the tetrahedral faces of each sub lattice, four Zn$^{2+}$ ions are interspersed by four O$^{2-}$ ions, and vice versa (George et al., 2010). During the fabrication of ZnO nanostructures, ZnO has spontaneous polarization due to the generation of polar symmetry along the hexagonal axis, which originates from the tetrahedral coordination (Hughes et al., 2004). As ZnO lacks an inversion core of space groups, its non-centro-symmetric structure makes it piezoelectric and pyro-electric (Moore et al., 2006). Both the Zn-(0001) and O-(0001) surfaces are typical polar surfaces in ZnO, but the (2 1 0 0 0) and (01 1 0 0) faces are non-polar surfaces with many O and Zn atoms and a minimal energy level (Sheikh et al., 2020). Researchers have shown that studying the polarity of ZnO nanoparticles may help increase their efficacy as photocatalysts in the removal of contaminants from water under light. This may be achieved by adjusting the polarity of the photocatalyst and regulating the pace at which ZnO nanoparticles aggregate. ZnO nanoparticles can be categorized as either 0D, 1D, 2D, and 3D as demonstrated in Fig. 6a (Leonardi, 2017). Many synthesis approaches and synthesis kinetics affect ZnO nanostructure development. 0D ZnO arrays may have the form of quantum dots or hollow nanospheres, whereas 1D arrays can have the shape of nanofibers, nanorods, nanoneedles, nanotubes, nanobelts, and nanowires (Ahmad et al., 2020; Cha et al., 2018; Choi et al., 2018; Imran et al., 2017; Kennedy et al., 2018; Kumar et al., 2020; Thakur et al., 2020). Nanosheets, nanoflakes, and disk-shaped formations are common examples of 2D nano architectures (Kanaparthi et al., 2020; Khera et al., 2019; Manjula et al., 2020; Wang, J. et al., 2016). 3D arrays of ZnO nanostructures may take many forms, including flowers,
urchins, and tetrapod’s (Borbón et al., 2019; Mishra et al., 2018; Qu et al., 2020; Wang, Y. et al., 2016). Several ZnO morphologies in a range of diameters are shown in Fig. 6(b-j). ZnO physical, optical, electrical, and mechanical characteristics are strongly impacted by these morphologies, making them applicable to a wide range of sectors. As a result, effective photocatalytic performances need ZnO nanostructure designs for photocatalytic processes.

![Diagram of ZnO crystal formation and morphologies](https://example.com/diagram.png)

Fig. 6: (a) Directions and possible shapes for crystal formation in ZnO wurtzite open access (Leonardi, 2017), complicated ZnO morphologies with a wide range of measurements: (b) quantum dots, (c) nanospheres are 0D ZnO. Adapted with permission from Elsevier (License No. 5583650527081, 5583650296604) (Saleh, 2019; Sun...
et al., 2020). (d) nanorods (Lee et al., 2020), (e) nanowires, Adapted with permission from Elsevier (License No. 5583651015432) (Kong et al., 2018), (f) nanobelts, Adapted with permission from Elsevier (License No. 5583761288257) (Rao et al., 2019), and (g) nanofibers, Adapted with permission from Elsevier (License No. 501830453) (Imran et al., 2017) are all 1D ZnO structures. (h) nanosheets, Adapted with permission from Elsevier (License No. 5583770341756) (Manjula et al., 2020), (i) nanoflakes, Adapted with permission from Elsevier (License No. 5583770192935) (Arasu et al., 2019), and (j) disk-like, Adapted with permission from Elsevier (License No. 5583770622534) (Zhu, Q. et al., 2018) structures made of 2D ZnO.

Mohanty and co-workers fabricated Ag/ZnO/g-CN heterojunction through a novel coprecipitation method for the photodegradation of MG and RhB dye under sunlight irradiation (Mohanty et al., 2021). Fig. 7a demonstrated the spherical grain morphology and Fig. 7(b-c) showed UV-vis spectra and a 2.25 eV band gap of fabricated heterojunction. Fabricated composite Ag/ZnO/g-CN demonstrated the highest photodegradation efficacy against RhB, MG, and Phenol around 97%, 91%, and 91% within 30 min under sunlight irradiation than pure g-CN and bare ZnO. Fig. 7d demonstrated the possible mechanism of photodegradation of dye using Ag/ZnO/g-CN heterojunction.

![Figure 7](image_url)

Fig. 7: (a) SEM image of fabricated heterojunction, (b) UV-visible spectra, (c) Tauc plot of fabricated nanoparticles, (d) Schematic representation of photodegradation of RhB and MG dye through Ag/ZnO/g-CN, Adapted with permission from Elsevier (License No. 5583781503399) (Mohanty et al., 2021).
He and colleagues fabricated g-CN/ZnO nanocomposite through the simple solid-state process for the conversion of CO$_2$ to fuels (He et al., 2015). g-CN/ZnO composite demonstrated aggregation of wrinkled sheets-like morphology as shown in Fig. 8a and band gap around 2.63eV as shown in Fig. 8b. The highest CO$_2$ conversion rate was observed for the ZnO/g-CN photocatalyst around 45.6 µmol h$^{-1}$g$_{\text{cat}}^{-1}$. When matched to ZnO and g-CN, the CO$_2$ conversion rate of the optimum ZnO/g-CN photocatalyst was 4.9 and 6.4 times higher, respectively as shown in Fig. 8c. Using a ZnO/g-CN heterojunction, a potential process for converting CO$_2$ into fuels was shown in Fig. 8d.

![Fig. 8:](image)

Fig. 8: (a) SEM image, (b) UV-visible spectra of fabricated g-CN/ZnO nanocomposite, (c) Photocatalytic efficacy of conversion CO$_2$ into fuels, (d) Schematic representation of photocatalytic conversion of CO$_2$ into fuels using fabricated g-CN/ZnO nanocomposite, Adapted with permission from Elsevier (License No. 5583790376862) (He et al., 2015).

4. Modification strategies to enhance photocatalytic efficiency of g-CN-based ZnO photocatalysts

Currently, ZnO and g-CN photocatalysts have been extensively studied to get rid of increasing water pollution (Paul et al., 2020). However, pristine ZnO and g-CN showed rapid e$^-$/h$^+$ pair recombination effect that limits their photocatalytic applications (Kong et al., 2017). Fabrication of g-CN-based ZnO-photocatalysts via heterojunction construction such as type-II heterojunction, Z-scheme, and S-scheme has been regarded as a notable approach to improve the charge separation, meanwhile, enhancing the photocatalytic activity.

4.1. Type-II heterojunction

The photocatalysts showed potent redox ability to produce ROS for effective photodegradation using a wide range of visible light. However, pristine photocatalysts are unable to achieve the required potentials because narrow band gaps use a broad spectrum of visible light and anticipated rapid e$^-$-h$^+$ recombination (Low et al., 2017).
Researchers have reported that heterojunction formation between various photocatalysts proficiently suppresses the e^-h^+ recombination due to differences in their VB and CB potentials. Based on band alignments conventional heterojunctions are categorized as type-I, type-II, and type-III (Low et al., 2017). Out of these, the charge migration pathway in type-II (staggered gap) heterojunction is more effective than type-I (straddling gap) and type-III (broken gap) heterojunction (Dhull et al., 2023). The photo-induced e^- in type-II heterojunction gets migrated to the reduction potential of SC-I and h^+ to the oxidation potential of SC-II resulting in enhanced photocatalytic activity. For the degradation of MB, Jang et al. fabricated a g-CN@ZnO heterojunction via atomic layer deposition (ALD) (Jang et al., 2019). By ALD of ZnO on g-CN, observed PL intensity was low indicating that the formed heterostructure between g-CN and ZnO (GZ5) impeded the e^-h^+ pair recombination effectively and enhanced the photoactivity Fig. 9(a). From their experiments, it was observed that out of as-prepared samples, the GZ5 showed up to 96.4% degradation of MB under optimal conditions. Considering the mechanism from Fig. 9(c), the g-CN e^- from the LUMO was migrated to the CB of ZnO, leaving g-CN h^+ in HOMO. The LUMO of g-CN (-1.1 eV) is more negative than the CB of ZnO (-0.27). Therefore, because of this effective charge separation, the e^-/h^+ pair recombination was suppressed, which ultimately increases the photocactivity of g-CN@ZnO composites.

Similarly, Huang et al. successfully synthesized g-CN/CeO$_2$/ZnO ternary nanocomposites that degraded MB when exposed to UV-visible light irradiation (Yuan et al., 2017). From the reported work, it was inferred that the
resultant type-II band position with effective migration of excited e-h\(^+\) in g-CN/CeO\(_2\)/ZnO nanocomposite was responsible for improved photo-induced charge separation. From the mechanism Fig. 9(c), it was noted that \(E_{CB}\) of g-CN was more than \(E_{CB}\) ZnO and CeO\(_2\). e\(^-\) in the CB of g-CN were moved to CB of CeO\(_2\) and CB of ZnO under the effect of an inner electric field between them. Meanwhile, h\(^+\) in the VB of ZnO was migrated to the VB of CeO\(_2\) and the VB of g-CN. Since the fabricated g-CN/CeO\(_2\)/ZnO nanocomposites had complementary band potentials, photocatalytic activity for organic pollutant destruction was significantly improved.

4.2. Z-Scheme heterojunction
In recent years, the Z-scheme heterojunction has received a lot of attention for its remarkable potential in various applications. Z-scheme heterojunctions when compared with type-II heterojunctions, exhibit enhanced charge separation, and transfer due to the staggered energy band alignment, leading to the improved redox ability of photocatalysts. In this regard, Wang et al. prepared Oxygen defects-mediated g-CN/ZnO Z-scheme heterojunction for the removal of 4-chlorophenol and hydrogen production (Wang, J. et al., 2017). The PL spectra results showed that the CN-10/OD-ZnO heterostructure impeded the recombination of the e-h\(^+\) pair effectively Fig. 10(a). This was also confirmed through the EIS spectra and the CN-10/OD-ZnO exhibited almost 95% degradation of 4-CP within 60 min of irradiation Fig. 10(b). Considering mechanism Fig. 10(d), the trapped electrons of OD-ZnO recombined with the VB h\(^+\) of g-CN, resulting in the accumulation of photogenerated CB e\(^-\) of g-CN and VB h\(^+\) of ZnO. Thereby, oxygen vacancies in OD-ZnO help in improving the absorption of light and facilitating the effective charge migration of the g-CN/OD-ZnO composite, resulting in improved photocatalytic removal of 4-chlorophenol. Moreover, the CN-10/OD-ZnO composite demonstrated an excellent visible-light Z-scheme evolution rate of H\(_2\), approximately five times that of pristine g-CN Fig. 10(c). A Z-scheme g-CN/ZnO/NiFe\(_2\)O\(_4\) heterojunction for photocatalytic removal of fluoroquinolone (FQs) antibiotics prepared by Garg et al. (Garg et al., 2022). To examine the e-h\(^+\) recombination rate, PL and EIS spectra were observed for as prepared samples (CN, ZnO, NiFe\(_2\)O\(_4\), CZN1, CZN2, and CZN3), the CZN1 showed the highest efficacy of photo-induced charge carriers’ separation. This could be attributed to the double charge transfer pathways established in the heterostructure, as this provided a dual Z-scheme mechanism that inhibited the recombination of the photo-induced electron-hole pairs. Therefore, the ternary heterostructure CZN1 demonstrated an enhanced photocatalytic performance and showed a 94% degradation rate of FQs antibiotics within 90 min.
Fig. 10: (a) PL intensity of the sample g-CN, OD-ZnO and CN-10/OD-ZnO, (b) EIS spectra of the samples, g-CN, OD-ZnO, CN-5/OD-ZnO, CN-10/OD-ZnO and CN-20/OD-ZnO (c) Schematic representation of the photocatalytic H\textsubscript{2} production through Z-scheme g-CN@ZnO composite, (d) Illustration of the Z-scheme for pollutant degradation, Adapted with permission from Elsevier (License No. 5517770955621) (Wang, J. et al., 2017).

4.3. S-scheme heterojunction

S-scheme is a rational charge transfer mechanism that showed efficient charge separation and migration due to internal electric field and band bending as compared to type-II and Z-scheme heterojunctions. In an S-scheme heterojunction, two semiconductors form an interface in such a way, that an e- depletiion layer and an e+ accumulation layer are formed between the positively charged reduction photocatalyst (RP) and negatively charged oxidation photocatalyst (OP). This promoted band bending as the fermi energy is at the same level. Consequently, the photo-induced CB e- of OP and VB h+ of RP tend to recombine at the interface region, and eventually, the VB of OP and CB of RP, which have strong redox abilities, are formed (Zhang, L. et al., 2022). In this regard, S-scheme g-CN/ZnO heterojunction was synthesized for the degradation of azo dye (Lee et al., 2022). For their experimental work, they prepared various samples using ZnO as a precursor and Zeolitic-imidazolate-framework-8 (ZIF8) as a template of g-CN. Out of as prepared samples, CN/ZIF8-450 displayed the best photodegradation results (95%), which was 1.6 times greater than pure CN (43%), within 1h. Due to its high specific surface area (182.8 m2/g), which is 3.4 times greater than CN (536 m2/g), and its recombination rate reduced, the CN/ZIF8-450 heterojunction exhibited excellent performance. In another study, an S-scheme 2D/2D N-ZnO/CN heterojunction was fabricated for the degradation of fluoroquinolone antibiotics. Various samples with different mass ratios (ZIF-L/CN) of 5%, 10%, 15%, and 20% were prepared by Zhang et al. (Zhang, C. et al., 2022). According to the findings, 15% NZCN showed lower PL spectra, indicating more effective separation of charge carriers Fig. 11a The EIS spectra further demonstrated that
the 15% NZCN showed a smaller arc radius, suggesting higher photogenerated charge transferability Fig. 11b. From, the S-scheme photocatalytic mechanism shown in Fig. 11c, CB e- of N-ZnO were transferred to the VB of CN and combined with h+. The VB h+ of N-ZnO reacts with OH- to produce \cdot\text{OH} radicals, and CB e- of CN combined with O\textsubscript{2} to give \cdot\text{O}^2-. Furthermore, the combination of \cdot\text{O}^2- and h+ results in the formation of 1O\textsubscript{2}. Finally, the ROS, namely \cdot\text{O}^2-, \cdot\text{OH}, and 1O\textsubscript{2}, along with h+, have been observed to exhibit significant efficacy in the photodegradation of fluoroquinolone antibiotics (FQs). Using 15% NZCN heterojunction, the degradation efficiency of NOR, ENR, LVF, and CIP could exceed 90% in 90 minutes. Similarly, another heterojunction photocatalyst g-CN/Co/ZnO has been reported for the removal of dye (Leelavathi et al., 2023). In terms of optoelectronic properties, it was observed that the g-CN/Co/ZnO composite exhibited excellent photocatalytic performance, as the Co and ZnO had an impact on the band gap energy, photo-induced e--h+ pair separation as well as decreased the charge migration resistance which resulted in enhanced degradation ability. The authors used MB, CV, and RhB cationic dyes as target pollutants to evaluate the photocatalytic efficacy of g-CN/Co/ZnO photocatalysts. The attained removal efficiencies of the MB, CV, and RhB dyes were 96.3%, 74.5%, and 75.14%, respectively.

Fig. 11: (a) PL intensity of the samples CN, 5% NZCN, 10% NZCN, 15% NZCN and 20% NZCN, (b) EIS spectra of the as-prepared samples, (c) Schematic representation of S-scheme mechanism of 2D/2D N-ZnO/CN heterojunction, Adapted with permission from Elsevier (License No. 5517710737286) (Zhang, C. et al., 2022).

5. Applications of g-CN/ZnO-based nanocomposite for pollutant degradation and energy conversion

5.1. Pollutant degradation
Zhang and co-workers fabricated g-CN/ZnO@graphene heterojunction through the facile hydrothermal self-assemble process for the photodegradation of RhB dye within 120 min under visible light irradiation (Zhang, J.-Y. et al., 2019). g-CN/ZnO@graphene (30%) photocatalyst demonstrated maximum RhB photodegradation
efficiency of around 82.7% and 81% under sunlight and UV light respectively within 120 minutes. Fabricated g-CN/ZnO@graphene (30%) photocatalyst showed S-scheme possible mechanism for the RhB degradation (Fig. 12a). Hashem et al., designed CdS@ZnO@g-CN heterojunction through novel ultrasonication assisted process for the elimination of RhB within 180 min (Hashem et al., 2021). Fabricated CdS@ZnO@g-CN heterojunction photo degraded RhB dye completely within 2hr and 3hrs under UV-light and visible irradiation respectively. CdS@ZnO@g-CN photocatalyst demonstrates Z-scheme/type II heterojunction mechanism for the photodegradation RhB dye as shown in Fig. 12b. Bahiraei and colleague’s synthesized magnetic CoFe$_2$O$_4@g$-CN/ZnO nanocomposite through in-situ chemical precipitation process for MB photodegradation (Bahiraei et al., 2023). CoFe$_2$O$_4@g$-CN/ZnO nanocomposite photo degraded around 92% MB dye within 100 min light irradiation. While bare CoFe$_2$O$_4@g$-CN and CoFe$_2$O$_4$/ZnO degraded MB dye around 49% and 31% respectively. Magnetic CoFe$_2$O$_4@g$-CN/ZnO photocatalyst followed the type II heterojunction mechanism for the photodegradation of MB dye under visible light irradiation. Similarly, Ag/Ag$_2$O@ZnO@g-CN nanocomposite was designed through the novel hydrothermal process for the photodegradation of MB dye under visible light irradiation (Wang, 2023). MB was completely degraded by fabricated Ag/Ag$_2$O@ZnO@g-CN nanocomposite within 50 min under visible light irradiation while Ag/Ag$_2$O@g-CN, ZnO@g-CN, and bare g-CN demonstrates 91.611%, 87.724%, and 64.48% degradation of MB dye. Fabricated Ag/Ag$_2$O@ZnO@g-CN nanocomposite showed p-n type heterojunction for the degradation of MB dye.
Thuan et al. fabricated ZnO-modified g-CN nanoparticles through the facile hydrothermal process for the photodegradation of ciprofloxacin within 120 min under sunlight irradiation (Van Thuan et al., 2022). Ciprofloxacin photodegradation reached around 93.8% by g-CN/ZnO within 120 min at pH 8.0 and the ciprofloxacin photodegradation rate for g-CN/ZnO photocatalyst was 4.9 times faster than bare g-CN as demonstrated in Fig. 13a. Designed g-CN/ZnO photocatalyst followed type mechanism for the degradation of ciprofloxacin as shown in Fig. 13b. Furthermore, Pham et al., designed ZnO/g-CN photocatalyst for photodegradation of tetracycline within 60 min under sunlight (Pham et al., 2023). Fabricated ZnO/g-CN photocatalyst degraded tetracycline around 92.6% within 60 min under light irradiation as shown in Fig. 13c and tetracycline photodegradation rate was 5 times more by ZnO/g-CN photocatalyst than bare g-CN nanocomposite. Fabricated ZnO/g-CN photocatalyst follows type II heterojunction mechanism for the photodegradation of tetracycline as shown in Fig. 13d. Similarly, Chi and co-workers synthesized ZnO/g-CN nanocomposite through novel deposition-precipitation process for the degradation of tetracycline hydrochloride under visible light irradiation (Chi et al., 2022). Maximum tetracycline hydrochloride was photo degraded by ZnO/g-CN nanocomposite around 100%, while bare g-CN and ZnO nanoparticles degraded around 88%, and 65% within 45 min under sunlight. Correspondingly, Zhu et al., fabricated ZnO/Cu$_2$O/g-CN heterojunction by a facile one-pot synthesis process for the photodegradation of chlortetracycline, tetracycline, ciprofloxacin, and oxytetracycline within 120 min (Zhu, Y. et al., 2022). Fabricated ZnO/Cu$_2$O/g-CN showed photodegradation efficiency around 99.5%, 98.79%, 95.35%, and 73.53% respectively within 120 min under visible light irradiation. ZnO/Cu$_2$O/g-CN photocatalysts degraded TC at a rate of 10.62 and 1.35 times greater than g-CN and Cu$_2$O/g-CN, respectively, in the first 30 min ZnO/Cu$_2$O/g-CN demonstrates p-n type mechanism for the photodegradation of these antibiotics.
5.2. Hydrogen production

Liu and colleagues synthesized g-CN/ZnO type II heterojunction nanorods through a facile light-assisted method for the photocatalytic efficiency of hydrogen production (Liu, J. et al., 2020). The formation of such a type of heterojunction promotes charge separation and increases the interfacial charge transfer (Fig. 14a). g-CN/ZnO-3 nanorods demonstrated around 23µmol of hydrogen amount produced within 3h as shown in Fig. 14b. In particular, g-CN/ZnO heterostructure enhanced photocatalytic hydrogen production by 3.3 times than ZnO NRAs with 85% retention rate stability after 5 cycles. Similarly, nitrogen-doped g-CN/ZnO Z-scheme heterojunctions have been designed through the novel process for hydrogen evolution by Liu and co-workers (Fig. 14c) (Liu, X. et al., 2020). N doped ZnOCN1 composite showed a high hydrogen production rate was around 0.78mmol h\(^{-1}\)g\(^{-1}\), which is 77% more than bare g-CN as shown in Fig. 14d. Similarly, g-CN/ZnO/Au photocatalyst was fabricated by Ge and coworkers through simple chemical method for the photocatalytic hydrogen production (Ge et al., 2023). g-CN/ZnO/Au photocatalyst hydrogen production rate was around 46.46 µmol g\(^{-1}\)h\(^{-1}\), while bare g-CN and g-CN/ZnO demonstrated around 1.59 µmol g\(^{-1}\)h\(^{-1}\) and 1.843 µmol g\(^{-1}\)h\(^{-1}\) respectively.

![Fig. 14: (a) Schematic mechanism of ZnO-g-CN nanocomposite, (b) hydrogen evolution by fabricated photocatalysts, Adapted with permission from Elsevier (License No. 5584071333686) (Liu, J. et al., 2020), (c) Schematic illustration of Nitrogen rich g-CN/ZnO photocatalyst, and (d) rate of hydrogen evolution by synthesized nanocomposites, Adapted with permission from Elsevier (License No. 5584080008309) (Liu, X. et al., 2020).](image)

5.3. CO\(_2\) reduction

Li and coworkers synthesized g-CN/ZnO nanoparticles decorated with Ti\(_3\)C\(_2\) through a facile coprecipitation process for the photocatalytic reduction of CO\(_2\) (Li et al., 2023). In this work, g-CN/ZnO/Ti\(_3\)C\(_2\) demonstrated around 6.41 µmol g\(^{-1}\)h\(^{-1}\) CO production while bare g-CN, ZnO, and g-CN/ZnO showed only 0.79 µmol g\(^{-1}\)h\(^{-1}\), 0.52 µmol g\(^{-1}\)h\(^{-1}\), 1.41 µmol g\(^{-1}\)h\(^{-1}\) production of CO respectively (Fig. 15a). Fabricated g-CN/ZnO/Ti\(_3\)C\(_2\) in...
photocatalyst follows type-II heterojunction mechanism for the reduction of CO₂ (Fig. 15b). Arif et al. designed ZnO/g-C₃N₄ heterojunction modified with Ag through facile hydrothermal process for CO₂ reduction (Arif et al., 2022). ZnO/g-C₃N₄/Ag heterojunction demonstrated production of CO and CH₄ around 36 μmol g⁻¹h⁻¹ and 14 μmol g⁻¹h⁻¹ respectively, while g-C₃N₄ produced CO and CH₄ 2 μmol g⁻¹h⁻¹ and 4 μmol g⁻¹h⁻¹ (Fig. 15c). Designed Ag modified ZnO/g-C₃N₄ nanocomposite showed type II heterojunction mechanism for CO₂ photoreduction. Similarly, g-C₃N₄/ZnO/graphene was fabricated through a novel process for the photo reduction of CO₂ (Wang et al., 2022). CO₂ conversion rate into CO was around 33.87 μmol g⁻¹h⁻¹ using g-C₃N₄/ZnO/graphene photocatalyst, while bare g-C₃N₄ demonstrated 1.61 μmol g⁻¹h⁻¹ (Fig. 15d). g-C₃N₄/ZnO/graphene photocatalyst showed an S-scheme mechanism for the reduction of CO₂. Data on different characterization techniques that can be employed to validate the properties of photocatalytic materials used in the treatment/degradation of wastewater concerning g-C₃N₄/ZnO composite is given in tabulated form in Table 2. Therefore, based on the above discussion on photocatalytic application, it can be concluded that both g-C₃N₄ and ZnO-based heterojunctions have shown outstanding photodegradation ability. Furthermore, there are several patent information available related to g-C₃N₄-based photocatalysts showing good photodegradation ability towards various pollutants (Raizada).

![Graphs and images](attachment:image.png)

Fig. 15: (a) Production of CO and CH₄, (b) Schematic mechanism of CO₂ reduction. Adapted with permission from Elsevier (Open Access) (Li et al., 2023). Production rate of (c) CO and CH₄. Adapted with permission from Elsevier (License No. 5584071085210) (Arif et al., 2022), and (d) CO. Adapted with permission from Elsevier (License No. 5584061422959) (Wang et al., 2022).
Table 2: Different characterization techniques employed to validate the properties of photocatalytic materials concerning g-CN/ZnO composite

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Characteristics</th>
<th>Photocatalysts</th>
<th>Characterization</th>
<th>Analysis of characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Morphological</td>
<td>g-\text{C}_{3}\text{N}_4/\text{Co/ZnO}</td>
<td>1. SEM</td>
<td>√ SEM analysis explores the surface and morphological characteristics of the photocatalysts. On analysis, SEM images revealed a soft layered sheet-like structure of ternary composite g-\text{C}_3\text{N}_4/\text{Co/ZnO}</td>
</tr>
</tbody>
</table>

SEM images of g-\text{C}_3\text{N}_4/\text{Co/ZnO} composite. (License no. 5660030503095) (Leelavathi et al., 2023).
CoFe$_2$O$_4$/g-C$_3$N$_4$/ZnO

SEM image of CoFe$_2$O$_4$/g-C$_3$N$_4$/ZnO nanocomposite. (License no. 5660040185077) (Bahiraei et al., 2023).

✓ The CoFe$_2$O$_4$/g-C$_3$N$_4$/ZnO nanocomposite's SEM study revealed fine, granular, flake-like particles.
| | g-C₃N₄/ZnO/NiFe₂O₄ | 2. TEM | ✓ Using HR-TEM, the precise surface morphology and crystallinity of the synthesized material g-C₃N₄/ZnO/NiFe₂O₄ were explained.
✓ High-resolution TEM images show the lattice fringe widths of 0.24, 0.25, and 0.34 nm, respectively, which were consistent with XRD measurements and could be indexed to the (101), (311), and (002) plane of ZnO, NiFe₂O₄, and g-C₃N₄, respectively. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

High-resolution TEM image of g-C₃N₄, ZnO, NiFe₂O₄ (License no. 5660110583516) (Garg et al., 2022).
ZnO, Ag₂O, and g-C₃N₄ nanoparticles were identified using an HRTEM image that allowed for the measurement of interplanar spacings and differentiation of the shades of lattice fringes. The ZnO nanoparticle's (1 0 0) plane relates to an interplanar spacing of 0.2363 nm, while the Ag₂O (2 0 0) plane is connected to an interplanar distance of 0.3000 nm. Additionally, the (0 0 2) facet of g-C₃N₄ corresponded to 0.3580 nm and 0.3743 between its bright fringes.

High-resolution TEM images of Ag/Ag₂O@ZnO/g-C₃N₄

(Wang, 2023)
<table>
<thead>
<tr>
<th>2.</th>
<th>Structural and chemical properties</th>
<th>g-(\text{C}_3\text{N}_4)/ZnO/Graphene Aerosol</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1. XRD (X-ray diffraction)</th>
</tr>
</thead>
</table>

- The crystal phase structure of the sample is characterized using XRD analysis.
- \(\text{g-}\text{C}_3\text{N}_4\) hinders the growth of ZnO crystals, resulting in a larger ZnO crystal size (33.4 nm) in the ZnO/graphene aerosol than in the g-\(\text{C}_3\text{N}_4\)/ZnO/graphene aerogel heterojunction (25.3 nm).

XRD patterns of several samples of g-\(\text{C}_3\text{N}_4\), ZnO/Graphene Aerosol, g-\(\text{C}_3\text{N}_4\)/ZnO/Graphene Aerosol 30% (License no: 5660120911646) (Zhang, J.-Y. et al., 2019).
2. XPS (X-ray photoelectron spectroscopy)

- XPS spectra are employed to discuss the binding energies and surface chemical states.
- The survey plot of the XPS spectra for \(g\text{-C}_{3}\text{N}_{4}/\text{ZnO}/\text{Ti}_{3}\text{C}_{2}\) showed the distinct peaks of the elements Ti, Zn, O, C, and N.
- The high-resolution C1s spectrum of \(g\text{-C}_{3}\text{N}_{4}/\text{ZnO}/\text{Ti}_{3}\text{C}_{2}\) where three binding energy peaks are found at 281.21, 284.80, and 288.45 eV.
- The N1s XPS spectrum is entirely derived from \(g\text{-C}_{3}\text{N}_{4}\), which fits into four peaks at eV: 398.83, 399.59, 401.39, and 404.46.
- The splitting energy of the two major split-orbit components in the Zn 2p peaks is 23.10 eV.

XPS spectra of C 1s, N 1s and Zn 2p for \(g\text{-C}_{3}\text{N}_{4}\), ZnO, \(g\text{-C}_{3}\text{N}_{4}/\text{ZnO}\) and \(g\text{-C}_{3}\text{N}_{4}/\text{ZnO}/\text{Ti}_{3}\text{C}_{2}\) -10. (Open access CC BY4.0) (Li et al., 2023)
FTIR spectra of the produced CoFe$_2$O$_4$/g-C$_3$N$_4$/ZnO nanocomposites were recorded to examine their bond structures.

- The Zn–O stretching, which validates the formation of ZnO, is responsible for the sharp peak at 511 cm$^{-1}$. The peak located at 807 cm$^{-1}$ in the g-C$_3$N$_4$ spectrum is attributed to the absorption of triazine units.
- The broad absorption peak in the 3300–3600 cm$^{-1}$ range may be associated with adsorbed H$_2$O molecules or the N–H group's stretching mode.
3. Optical and Electrochemical properties

<table>
<thead>
<tr>
<th>CN/ZnO/Graphene aerosol</th>
<th>Band gap values of different samples of CN, ZnO, CN/ZnO, CN/ZnO/Graphene aerosol, (License no. 5660131266486) (Wang et al., 2022)</th>
</tr>
</thead>
</table>

1. Tauc plot

- The bandgaps of CN, ZnO, CN/ZnO, and CN/ZnO/Graphene Aerosol were found to be 3.01, 3.12, 3.17, and 3.20 eV, respectively calculated using Tauc plots.
- Contrary to this CN showed visible light absorption < 480 nm wavelength.
- Due to the presence of Graphene Aerosol the CN/ZnO/Graphene Aerosol nanocomposites showed a wide range of light absorption.
Comparing g-C₃N₄/Co/ZnO ternary nanocomposites to pure g-C₃N₄ and ZnO, a notable decrease in PL emission intensity has been observed.

PL implies that in the g-C₃N₄/Co/ZnO composite, metallic Co and ZnO nanoparticles serve as an effective electron-accepting material that prevents the direct recombination of electron-hole pairs and speeds up the separation of photogenerated charges.
<table>
<thead>
<tr>
<th>N-ZnO/g-C₃N₄</th>
<th>3. EIS (Electrochemical Impedance Spectroscopy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓ EIS can likewise demonstrate how the carriers in the photocatalyst can separate and migrate.</td>
</tr>
<tr>
<td>✓ According to the EIS measurements, CN's arc radius was larger than 15% N/ZnO/g-C₃N₄, indicating that 15% N/ZnO/g-C₃N₄ had a higher photogenerated charge transferability than CN.</td>
<td></td>
</tr>
</tbody>
</table>

EIS measurements of several samples of CN, 15% N-ZnO/g-C₃N₄, ZnO. (License no. 5660140267593) (Zhang, C. et al., 2022)
<table>
<thead>
<tr>
<th>4.</th>
<th>Photocatalytic properties</th>
<th>g-C3N4/ZnO</th>
<th>EPR (Electron paramagnetic resonance)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>EPR spectra under dark and simulated sunlight of g-C3N4/ZnO nanorods. (License no. 5660551230497) (Zhong et al., 2020).</td>
</tr>
</tbody>
</table>
6. Conclusion and Future Perspectives
Semiconductor photocatalysis as a promising technology holds potential for environmental remediation and renewable energy applications. Amongst several photocatalysts, g-C$_3$N$_4$ (g-CN) and ZnO are favorable semiconductor photocatalysts as they are cost-effective, abundant in nature, have a suitable band gap, and exhibit good stability in addition to excellent photocatalytic properties due to which they are suitable for many environmental and energy-associated applications. The g-CN and ZnO-based photocatalysts have been broadly explored for various photocatalytic applications, including pollutant degradation, water splitting, and CO$_2$ reduction, making them valuable materials for sustainable energy and environmental remediation. In summary, the g-CN/ZnO-based nanocomposite represents a promising nanocomposite material with exceptional properties and numerous potential applications. Its synthesis and characterization are critical for tailoring its properties for specific requirements. As research progresses, further advancements and optimizations of this nanocomposite will unlock its full potential, leading to breakthroughs in various fields, including energy, and environment. In the present review, we have discussed the photocatalytic properties of g-CN/ZnO-based nanocomposite towards several pollutants degradation and energy conversion with their proposed photocatalytic mechanism. We have also discussed the different modification strategies that can be employed to minimize the drawbacks of g-CN and ZnO as single photocatalysts. Through the synergistic combination of g-CN and ZnO, the formed heterojunction/nanocomposite exhibits enhanced properties that make it suitable for various photocatalytic applications. The heterojunction formation of g-CN and ZnO possesses several unique properties, such as wide or extended light absorption ability, efficient charge separation, and strong redox potential, making it highly effective in degrading organic pollutants under light irradiation. Besides, good photocatalytic properties, g-CN/ZnO nanocomposites need some exploration in their photocatalytic properties. In this conclusion, we have summarized the key findings and have discussed the future perspectives of g-CN/ZnO-based nanocomposites.

- The synthesis of g-CN/ZnO-based nanocomposites has been explored using different methods, including sol-gel, hydrothermal, and co-precipitation techniques. These methods offer flexibility in tailoring the nanocomposite's structure, morphology, and properties to suit specific applications. However, further research is needed to optimize the synthesis parameters and scale up the production of g-CN/ZnO-based nanocomposites to meet industrial demands.

- The structural, optical, and electronic properties of g-CN/ZnO-based nanocomposites play an important role in their overall performance. The intimate and strong contact between g-CN and ZnO results in improved photocatalytic activity enhanced optical and electrical properties, and superior mechanical strength. Future research should focus on understanding the underlying mechanisms governing these synergistic effects and developing advanced characterization techniques to probe the nanocomposite's structure at the nanoscale. Also, more focus should be placed on density functional theory and theoretical calculation which will help explore their structural and electronic properties.

- One of the most promising applications of g-CN/ZnO-based nanocomposite photocatalysts lies in photocatalysis. The nanocomposite's unique properties, such as its broad absorption range, efficient charge separation, and strong redox potential, make it highly effective in degrading organic pollutants under visible light irradiation. Future studies should explore the optimization of the nanocomposite's composition, morphology, and surface properties to further enhance its photocatalytic efficiency and stability. Additionally, the development of novel reactor designs and immobilization strategies would facilitate the practical utilization of g-CN/ZnO-based nanocomposites in water and air purification systems.

- Lastly, environmental remediation is an important application area where g-CN/ZnO-based nanocomposites can play a significant role. The photocatalytic degradation of these nanocomposites can be harnessed for the removal of various wastewater pollutants (organic pollutants) and heavy metals from contaminated water and soil. Future research should focus on developing scalable and cost-effective methods for the large-scale deployment of g-CN/ZnO-based nanocomposites in real-world environmental remediation applications.

Nanofabrication
https://doi.org/10.37819/nanofab.8.1774
In conclusion, the g-CN/ZnO-based nanocomposites represent a versatile nanocomposite material with exceptional properties and diverse applications. Further research is needed to optimize its synthesis, understand its structure-property relationships, and explore new avenues for its application. The continued production of g-CN/ZnO-based nanocomposites will undoubtedly contribute to advancements in photocatalytic fields.

References

Wang, J. (2023). Construction of ternary heterostructured Ag/Ag2O@ZnO@g-C3N4 nanocomposite as an widened visible light photocatalyst for the organic oxidation. Journal of Physics and Chemistry of Solids, 180, 111389.

Yang, Y., & Bian, Z. (2021). Oxygen doping through oxidation causes the main active substance in g-C3N4 photocatalysis to change from holes to singlet oxygen. Science of the total environment, 753, 141908.

