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Biomarkers of Cerebral Amyloid Angiopathy 
and Neuropathological Relationship with 
Alzheimer’s Disease
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Abstract: Cerebral amyloid angiopathy (CAA), characterized by 
beta-amyloid (Aβ) deposits within small- to medium-sized blood 
vessels of the brain and leptomeninges, is known to be associat-
ed with an elevated risk of lobar intracerebral hemorrhage. Clin-
ical diagnosis of CAA is complicated due to the limited diagnosis 
methods and lack of biomarkers for this disease. It was found 
that CAA has a significantly high probability of comorbidity with 
Alzheimer’s disease (AD) due to the similar neuropathological 
characteristics known as amyloid-related imaging abnormalities 
(ARIA). Anti-Aβ monoclonal antibody therapy has been exten-
sively investigated in the treatment of AD patients and applied 
in several clinical trials worldwide. However, common side ef-
fects such as hemorrhage and edema may occur for patients 
with preclinical or asymptomatic CAA when using antibody ther-
apy. Therefore, it is crucial to identify CAA comorbidity in AD 
patients before starting anti-Aβ monoclonal antibody therapy. 
This review summarizes the clinical diagnostic methods and re-
lated biomarkers for AD and CAA. Further investigation of CAA 
for its neuropathological relationship with AD and the discovery 
of novel biomarkers may pave the way for a more accurate di-
agnosis and effective prevention of harmful side effects during 
treatment. It is of great importance to avoid adverse outcomes 
such as cerebral hemorrhage and edema caused by CAA in the 
treatment of AD and CAA comorbid patients. 
Keywords: Alzheimer’s disease; Cerebral amyloid angiopathy; 
Lecanemab.

INTRODUCTION

Alzheimer’s disease (AD) is a common neurodegenerative disease, 
and one of its pathological manifestations is the deposition of be-
ta-amyloid (Aβ), which can aggravate the degree of dementia in AD 
patients. Cerebral amyloid angiopathy (CAA) - Aβ depositing in the 
vessel wall - recognized as a comorbid condition with AD due to the 
common pathological protein deposition, has garnered growing inter-
est because of its association with an elevated risk of hemorrhage in 
individuals with AD. There are common pathways in the pathogenesis 
of CAA and AD, but CAA patients are more likely to have sponta-
neous cerebral hemorrhage. Therefore, when patients with both AD 
and CAA receive antibody treatment, prone to cerebral hemorrhage, 
affecting treatment effectiveness and prognosis. In clinical practice, 
due to the lack of pathological evidence in most patients and the 
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limitations of diagnostic criteria based on clinical 
imaging, including the identification of preclinical 
CAA and the differentiation of mixed bleeding, it is 
important to further search for specific diagnostic 
markers for CAA. 

1. ALZHEIMER’S DISEASE

1.1. Pathological Changes 
in Alzheimer’s Disease

AD is a neurodegenerative disease with insidious 
onset and slow progressive aggravation [1]. The 
World Report on Alzheimer’s Disease 2021 states 
that there are about 41 million people with AD 
worldwide. According to the China Alzheimer’s 
Disease Report 2024, there are about 13.1 million 
AD dementia patients in the elderly aged 60 years 
and above in China, and the number will increase 
greatly with the aging of the population, causing a 
great burden on social and medical resources. 

The early symptoms of AD are mild cogni-
tive impairment. With the progression of the 
disease, cognitive decline, emotional and person-
ality changes, language dysfunction, inability to 
take care of themselves, and behavioral problems 

gradually appear. The main pathological features 
of AD are amyloid plaques formed by Aβ deposi-
tion, neurofibrillary tangles formed by abnormal 
phosphorylation of tau protein, neuronal death, 
and loss of neural synapses [2]. Recent studies [3] 
have found that the pathological process of AD 
is gradually worsening, and these clinical symp-
toms are the inevitable result of the occurrence 
and development of the disease. It should be de-
fined by biologic features such as neuropatho-
logical changes. Therefore, biomarkers to detect 
neuropathological changes in AD are particularly 
important.

1.2. Alzheimer’s Disease-Related 
Biomarkers and Diagnosis

Biomarker classification is the grouping of bio-
markers and reflects common protein pathological 
pathways or pathogenic processes. The new guide-
lines [3] classify biomarkers into three categories: 
① Core biomarkers of AD neuropathologic change 
(ADNC); ② Nonspecific biomarkers that are im-
portant in the pathogenesis of AD but also involved 
in other brain diseases; ③ Biomarkers of common 
non-AD comorbidities (Table 1). 

Table 1. Categorization of fluid analyte and imaging biomarkers [3].
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Biomarker staging can distinguish the severity 
of AD biology and divides AD into four biological 
stages [3]: in stage A, the initial changes in bio-
markers; in Stage B, early changes; in stage C, mid-
term changes; in stage D, late changes (Table 2). 
Currently, staging by amyloid PET and tau PET or 
by a combination of T1 fluid labeling and tau PET 
is clinically feasible. 

According to the 2023 NIA-AA diagnostic 
guidelines, AD is diagnosed based on the follow-
ing three points: 1. Amyloid PET; 2. Cerebrospinal 
fluid (CSF) Aβ42/40, CSF p-tau181/Aβ42, CSF 
t-tau/Aβ42; 3. Plasma markers (There are current-
ly no regulatory approvals for blood biomarkers, 
although recent studies [4] have found that plasma 
tests, used alone or in combination with p-tau217 
assays, are as accurate as approved CSF assays). 
According to the degree of cognitive impairment 
in clinical patients, AD is divided into numerical 
clinical stages of 0-6 stages to accurately assess 
the patient’s condition and formulate correspond-
ing treatment plans.

(See Table 1)

Notes: P-tau231, p-tau205, MTBR-tau243, and 
non-phosphorylated tau fragments are included in 

this table because they are discussed in the text; 
however, these analytes have not undergone the 
same level of validation testing as other core 
biomarkers. Biomarkers are categorized based 
on four criteria. First, three broad mechanistic 
groupings have been identified. Second, biomark-
ers are subclassified based on the proteinopathy 
or pathophysiologic pathway that each measure 
(e.g., A, T1, T2, N, etc.). Third, within the core 
category, we distinguish between Core 1 and 
Core 2 biomarkers. Fourth, imaging and fluid an-
alyte biomarkers are listed separately within each 
category.

Abbreviations: Aβ amyloid beta, AD Alzhei-
mer’s disease, αSyn-SAA alphasynuclein seed 
amplification assay, CSF cerebrospinal fluid, CT 
computed tomography, FDG fluorodeoxyglucose, 
GFAP glial fibrillary acidic protein, MRI magnet-
ic resonance imaging, MTBR microtubule-binding 
region, NfL neurofilament light chain, PET pos-
itron emission tomography, WMH white matter 
hyperintensity.

A fluid analyte that is presently informative 
only when measured in CSF. No notation is used 
if the fluid analyte is informative with plasma 
or CSF.

Table 2. Conceptual biological staging with fluid biomarkers [3].

Notes: Staging may be accomplished by (1) a 
combination of amyloid PET and tau PET or (2) 
a combination of Core 1 fluid biomarkers (which 
would establish biological stage A or higher) plus 
tau PET (which would be used to discriminate 
between stages). The approach to determining 
A+ versus A− with amyloid PET may need spe-
cial consideration in autosomal dominant Alzhei-
mer’s disease (ADAD) and Down syndrome AD 
(DSAD).

Abbreviations: Aβ amyloid beta, CSF cerebro-
spinal fluid, PET positron emission tomography, 
p-tau phosphorylated tau. 

2. CEREBRAL AMYLOID ANGIOPATHY

2.1. Pathological Changes 
in Cerebral Amyloid Angiopathy

CAA is a type of age-related cerebral small vessel 
disease caused by Aβ protein deposition in the tuni-
ca media and adventitia of small vessels in the ce-
rebral cortex and leptomeninges. The destruction of 
vessel wall integrity secondary to Aβ protein depo-
sition can lead to clinically recurrent lobar hem-
orrhage and age-related cognitive dysfunction [5]. 
Pathologically, CAA can be divided into two types: 
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in type I, Aβ was mainly deposited in cortical cap-
illaries, which was closely related to Aβ deposition 
in AD; in type II CAA, Aβ was found in the lep-
tomeninges, cortical arteries and arterioles (Fig. 1). 
There is a common pathway in the pathogenesis and 
a high comorbidity rate between CAA and AD [6], 
but the relationship and difference between the two 
have not been fully clarified. 

A systematic review of clinical and patholog-
ical studies showed that the prevalence of CAA 
was 20%-40% in the non-dementia population, 
while it was as high as 50%-60% in the dementia 
population [7]. Based on the pathological data of 
the National Human Brain Bank for Development 

and Function, it is found that patients with CAA 
and AD comorbid with cognitive impairment are 
usually more common. Among 483 donors with a 
mean age of 78.8 years, 31.3% had CAA pathol-
ogy. Among them, 64.9% of CAA patients also 
had AD, and 55.7% of AD patients were CAA 
positive (unpublished data). A study [8] found 
that among 87 white subjects (69 cases of CAA 
and 18 cases of NC), more than 62% (n=42) of 
CAA patients showed cognitive impairment. In 
addition, in AD and CAA patients, apolipopro-
tein E (ApoE) allele changes are observed simul-
taneously, and ApoE gene affects Aβ clearance or 
accumulation.

Figure 1. CAA-positive vessels.

Anti-amyloid-β immunostaining (left, mouse 
monoclonal antibody, diluted 1:500, DAKO 
Cat#M0872) of a postmortem section of the oc-
cipital lobe from a 95-year-old male donor and a 
74-year-old female donor in the National Human 
Brain Bank for Development and Function reveals 
existing Aβ plaques in cortical vessels.

2.2. Diagnosis of Cerebral 
Amyloid Angiopathy

According to the newly revised Boston criteria 
(Table 3) [9], no clinical means have been found to 
confirm CAA, and the established CAA diagnosis 
can only be established by full autopsy certificate 
with severe vascular lesions. According to the an-
atomical distribution of CAA-positive vessels, the 
severity of CAA was divided into grade III: in 

Grade I, CAA was limited to leptomeningeal or 
parenchymal vessels in the neocortex (frontal, pa-
rietal, temporal, and occipital cortex). In grade II, 
involvement extends to vessels in the allogeneic 
cortex (cingulate, entorhinal cortex, and hippocam-
pus), cerebellum, and midbrain. Grade III includes 
all regions of grade II, as well as the lower brain-
stem, basal ganglia and thalamus [10]. The severity 
of individual vessels is also graded: 0(normal)=no 
CAA; 1(mild)=Aβ-deposits in the vessel wall with-
out loss of smooth muscle cells in the vessel wall; 
2(moderate)=Aβ-deposits in the vessel wall accom-
panied by degeneration of the smooth muscle cell 
layer; and 3(severe)=extensive Aβ-deposition and 
focal vessel wall fragmentations, microaneurysms, 
signs of hemorrhage, and fibrinoid necrosis [11]. 

As a cerebrovascular pathological phenomenon, 
CAA can cause a variety of clinical manifestations 
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or no symptoms. Some studies have proposedthat 
many elderly patients have no obvious clinical 
symptoms, which makes CAA diagnosis more diffi-
cult, and it cannot be completely diagnosed by only 
the existing clinical-imaging examination [12]. On 
the other hand, due to the hyalinization of CAA 
vessels, if there is a need for surgical intervention 
but no CAA is diagnosed, the occult patients with 
vascular rupture and bleeding during surgery will 
be extremely difficult to rescue, and the mortality 
rate is exceptionally high. Therefore, it is critically 
important to find CAA biomarkers for CAA screen-
ing, diagnosis, staging, disease progression predic-
tion and clinical trials in clinical practice. 

2.3. Brain Injury of Cerebral Amyloid 
Angiopathy and Alzheimer’s Disease

Advanced CAA is associated with cognitive impair-
ment. The pathogenesis of cognitive impairment in 
CAA is likely multifactorial, involving contribu-
tions from both vascular injury and AD pathology. 
CAA frequently coexists with AD, appearing in 
moderate to severe forms in 30 of 117 (26%) AD 
brains in an autopsy series; CAA with hemorrhage 
was observed in six (5.1%) of these cases [13,14]. 
Another autopsy study revealed that patients with 
both CAA and AD exhibited more severe cognitive 
impairment than those with AD alone [15]. Simi-
larly, an MRI study in AD patients demonstrated 
that the presence of multiple microbleeds was as-
sociated with worse cognitive performance [16]. 
However, only about 25% of CAA patients appear 
to have clinical histories of dementia before their 
first hemorrhage [17].

CAA is characterized by vascular amyloid de-
posits that are biochemically similar to the material 
found in senile plaques in AD. Some cases of ear-
ly-onset CAA are caused by variant forms of the 
gene encoding APP and are inherited in an autoso-
mal dominant pattern. While most of these variants 
are also associated with at least some of the neuro-
pathologic features of AD, at least two APP variants 
(Glu693Gln and Leu705Val) have been reported 
to cause autosomal-dominant CAA with minimal 
parenchymal amyloid plaques or neurofibrillary 
tangles [18-20]. The Dutch-type Glu693Gln APP 
pathologic variant is associated with cerebral am-
yloid deposition and tends to follow a more aggres-
sive course than that seen in patients with sporadic 
CAA [21]. Additionally, patients carrying the ApoE 
epsilon 2 (ε2) or epsilon 4 (ε4) alleles appear to be 

at a greater risk for CAA-related hemorrhage com-
pared to those with only the common ApoE epsilon 
3 (ε3) allele [22-26]. One systematic review found 
a dose-dependent association between ApoE ε4 
and sporadic CAA [27]. ApoE ε4 has been shown 
to promote the deposition of Aβ-peptide in AD 
[28] as well as following severe head injury [29]. 
The ApoE ε2 and ε4 alleles act through distinct 
mechanisms. While ApoE ε4 increases Aβ-pep-
tide deposition [28], ApoE ε2 causes amyloid-lad-
en vessels to undergo changes such as concentric 
wall splitting and necrosis, which predispose them 
to rupture [23,30,31]. Patients with CAA who carry 
both ApoE ε2 and ε4 alleles appear to experience 
particularly early disease onset and a higher risk of 
early recurrence [23,32]. Additionally, carriers of 
the ApoE ε2 allele tend to have larger intracerebral 
haemorrhage (ICH) volumes, increased mortality, 
and worse functional outcomes compared to non-
carriers, while these associations are not observed 
for carriers of the ApoE ε4 allele [33].

Cerebrovascular disease has been linked to 
worse cognitive performance in patients with AD. 
Clinicopathologic studies suggest that cerebrovas-
cular disease lowers the threshold for clinical de-
mentia in patients with a neuropathologic diagno-
sis of AD [34-44]. Decreased blood flow before Aβ 
deposition has been observed in both mouse mod-
els of AD and human studies. This reduction in 
blood flow has been proposed to contribute directly 
to amyloid accumulation, likely by impairing the 
clearance of amyloid. Additionally, vascular fac-
tors may contribute to the breakdown of the blood-
brain barrier [45]. Numerous studies have identified 
an increased risk of AD in association with various 
neuroimaging or pathologic markers of cerebrovas-
cular disease, including atherosclerosis in the cir-
cle of Willis [46-49], periventricular white matter 
lesions [41,50-52], cerebral microbleeds [53], and 
cortical infarcts [41,42,54]. Based on these and oth-
er findings, some researchers conclude that a vas-
cular mechanism may be a primary etiologic factor 
in AD [55].

2.4. Cerebral Amyloid Angiopathy 
related biomarkers

2.4.1. Brain Imaging Markers

The main imaging feature of CAA is lobar ce-
rebral hemorrhage. Other MRI biomarkers in-
clude strict lobar microbleeds, superficial cortical 
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siderosis, multiple subcortical spots WMH, severe 
perivascular spaces in the centrum semiovale, and 
cortical microinfarcts [56]. Multiple lobar mi-
crobleeds detected on T2*/susceptibility weight-
ed imaging (SWI) MRI are considered to be one 
of the signature biomarkers for the presence of 
CAA. The key features of hemorrhagic neuroim-
aging of CAA are acute or chronic hemorrhages 
of cortical sulci and adjacent sulci (manifested as 
superficial cortical siderosis in chronic cases and 
sulci subarachnoid hemorrhage in acute cases). 
This may indicate repeated leakage of blood from 
CAA-positive vessels into the subarachnoid space. 
Siderosis or cSAH is perhaps the most clinically 
relevant manifestations of the disease: ① It is the 
trigger of transient focal neurological symptoms 
(“amyloid symptoms”) [57, 58]; ② It has been 
shown to have a high risk of symptomatic lobar 
cerebral hemorrhage, which is critically important 
for CAA clinical nursing [59-61]; ③ It may be 
an independent risk factor for new-onset demen-
tia after cerebral hemorrhage [62]. Notably, these 
effects of siderosis or cSAH were independent of 
concurrent microbleeds and were higher than the 
effects of any microbleeds. The critical role of 
cortical superficial siderosis in CAA neurological 
dysfunction may be related to the neuropathologi-
cal observations between the leptomeningeal cor-
tical layers [63]. 

Additionally, CAA is one of the main causes 
of amyloid-related imaging abnormalities (ARIA), 
especially in elderly patients [64], and the patho-
logical changes of CAA mostly appear in the form 
of microbleeds. ARIA specifically refers to a series 
of imaging manifestations of magnetic resonance 
imaging abnormalities, including cerebral hem-
orrhage (hemorrhage type, ARIA-H) and cerebral 
edema (effusion type, ARIA-E). The occurrence 
of ARIA is closely related to ApoE4/4 [65], which 
are more prominent when combined with CAA 
[66,67]. CAA-related intracerebral hemorrhage or 
microbleeds are located in the superficial brain lobe 
and tend to involve the posterior temporal lobe and 
occipital lobe, consistent with the selective location 
of Aβ deposition in CAA [68]. In patients with a 
large number of cerebral microbleeds, the lesions 
tend to accumulate in the same brain lobe [56]. Dif-
ferent from hypertensive intracerebral hemorrhage 
(which mainly involves deep gray matter and brain 
stem), lobar hemorrhage and microhemorrhage are 
also the main clues for antemorporeal diagnosis of 
CAA [68]. 

2.4.2. PET Testing

Positron Emission Computed Tomography (PET) is 
an advanced clinical imaging technique in the field 
of nuclear medicine, which plays an important role 
in the diagnosis of brain diseases. 11C-Pittursburgh 
Complex B (PiB) is a commonly used marker be-
cause it can bind to Aβ in blood vessels and brain 
parenchyma as derivatives of Aβ staining agent 
thioflavin Tand thus be taken up by PET [68, 69, 70]. 
In addition, three other 18F labeled imaging agents, 
florbetaben [71] (AV-1), florbetapir [72] (AV-45), and 
flutemetamol [73] (GE-067), have been approved 
for clinical imaging of Aβ PET. PiB uptake was 
increased in CAA patients compared with age-
matched healthy controls [74]. For the qualitative 
evaluation of PiB, the positive rate of CAA patients 
can reach 77%-92%, and negative PiB can basically 
rule out CAA, but the specificity of PiB positive for 
CAA is relatively low, because it cannot identify Aβ 
deposition in blood vessels and brain parenchyma, 
and cannot determine the source of Aβ [75].

Therefore, it is very difficult to differentiate 
CAA from AD by quantitative or qualitative evalu-
ation of PET uptake. There were differences in the 
preferential deposition sites of Aβ between CAA 
and AD patients (in CAA, Aβ is preferentially ac-
cumulated in the occipital lobe; in AD, the frontal 
lobe lesions are prominent and usually do not in-
volve the occipital lobe). Therefore, the difference 
of PiB uptake in different regions has been highly 
expected in the differentiation of CAA and AD, but 
the results of the two groups of individuals over-
lap. In addition, cases with high uptake in the fron-
tal lobe and low uptake in the occipital lobe were 
finally diagnosed as CAA by pathology [76,77]. 
Moreover, the ApoE ε4 allele or ApoE ε4 genotype 
increases the risk of Aβ PET imaging positivity in 
patients [78]. In conclusion, although the sensitivity 
is high, the specificity is not high, and the ratio of 
PET uptake in occipital lobe to whole cortex cannot 
accurately distinguish CAA from AD. 

In recent years, tau PET has also received wide-
spread attention. Flortaucipil is a radioactive tracer 
that binds to tau protein. It can detect tau accumu-
lation and its distribution in the brain to accurately 
evaluate its role in clinical manifestations of dis-
eases. A study published in 2023 found that Tau 
PET can better predict cognitive decline in patients 
[79]. There is a significant correlation between mi-
crobleeds and Aβ pathology and tau accumulation 
in CAA individuals without cognitive impairment. 
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It was found that in the presence of Aβ pathology, 
cerebrovascular pathology altered the accumula-
tion of tau in the early stages of AD; that is, the 
co-occurrence of microbleeds and amyloid beta pa-
thology was related to the larger accumulation of 
tau aggregates in the early stages of the disease. It 
opens the possibility that interventions targeting 
microbleeds may reduce the accumulation rate of 
tau protein [80]. It is meaningful to incorporate tau 
PET into routine clinical evaluation as it can assess 
individual prognosis and select the most appropri-
ate treatment strategy for each patient.

2.4.3. Cerebral Amyloid
Angiopathy-Related Testing

Studies have found that Aβ levels in the cerebrospi-
nal fluid of CAA patients are abnormally changed. 

The level of Aβ40 and Aβ42 in sporadic CAA pa-
tients was lower than that in healthy controls [81]. 
Besides, the levels of Aβ40 and Aβ42 in cerebro-
spinal fluid of patients with symptomatic and pre-
symptomatic Dutch type hereditary CAA were also 
lower than those of healthy controls [82]. At pres-
ent, the existing clinical diagnostic methods are 
not enough to determine the occurrence of CAA, 
and the use of biomarkers to identify CAA is a con-
venient way for clinical diagnosis. However, there 
are still great challenges in developing molecular 
markers for CAA diagnosis, and more attention 
should be paid to the development of CAA diag-
nostic markers. In addition, proteomic results have 
shown that SEMA3G and HTRA1 have the poten-
tial to become molecular diagnostic markers for 
CAA, as they are highly expressed in CAA blood 
vessels [65,83].

Table 3. Boston criteria version 2.0 for sporadic CAA [9].
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* Other causes of haemorrhagic lesion: anteced-
ent head trauma, haemorrhagic transformation of an 
ischemic stroke, arteriovenous malformation, hae-
morrhagic tumor, central nervous system vasculitis.

Abbreviations: CAA cerebral amyloid angi-
opathy, MRI magnetic resonance imaging, ICH 
intracerebral haemorrhage, TFNE transient focal 
neurologic episodes, CI cognitive impairment, 
CMB cerebral microbleed, cSS cortical superficial 
siderosis, cSAH convexity subarachnoid haemor-
rhage, CSO-PVS visible perivascular spaces in the 
centrum semiovale, WMH-MS white matter hyper-
intensities in a multispot pattern

3. MONOCLONAL ANTIBODY THERAPY 
DRUGS FOR ALZHEIMER’S DISEASE 
AND POOR PROGNOSIS OF CEREBRAL 
AMYLOID ANGIOPATHY

The pathogenesis of AD is not completely clear, and 
related hypotheses include the Aβ cascade hypoth-
esis, tau protein hyperphosphorylation hypothesis, 
the interaction between Aβ and cerebrovascular 
abnormalities, neuroinflammation hypothesis and 
oxidative stress hypothesis, etc. Among them, the 
Aβ cascade hypothesis has been in a relatively im-
portant position in drug development [84-87]. Tra-
ditional drugs for the treatment of AD are mainly 
based on drug treatment for stages that have shown 
typical dementia symptoms, including cholinester-
ase inhibitors and glutamate receptor antagonists, 
but the overall efficacy still needs to be further 
improved. Research has found that AD patients 
receiving high doses (10 mg/kg) of Aducanumab 
have an incidence of 41.3% for ARIA and 35.2% 
for ARIA-E [88]; The incidence of ARIA in AD 
patients receiving Donanemab (first 3 doses of 
700 mg, sequential treatment of 1400 mg) reached 
36.8% [89]; For AD patients receiving Solanezum-
ab (400 mg), although the incidence of ARIA is rel-
atively low, with ARIA-E and ARIA-H at 0.9% and 
4.9%, respectively, it does not alleviate the cogni-
tive decline of patients [90].

Lecanemab is the first AD drug in the world to 
receive full approval from the U.S. Food and Drug 
Administration (FDA) in nearly 20 years. It is a 
single-gram, anti-Aβ antibody that acts by highly 
specific binding to Aβ fibrils to eliminate toxic, sol-
uble Aβ aggregates, thereby improving cognitive 
function and quality of life. Clinical trial data [91] 
have shown that Lecanemab treatment has a signifi-
cantly poor prognosis, that is, cerebral edema and 

cerebral hemorrhage. Studies have found that the 
main risk factors for cerebral edema are the anti-
body dose and the presence of the ApoE4 allele [91]. 
The mechanism of cerebral edema has not been 
elucidated, but it may be due to the direct binding 
of Aβ antibodies to Aβ deposits [92-94]. A recent 
study [95] found that a patient who received three 
doses of intravenous lecanemab developed acute 
cerebral hemorrhage after treatment of acute isch-
emic stroke syndrome. The autopsy results showed 
that the patient had multifocal parenchymal hem-
orrhage, CAA and AD neuropathological changes, 
and diffuse vasculitis with necrotizing angiopathy. 
These studies suggest that CAA may be responsible 
for the poor outcomes such as ICH and cerebral ede-
ma in AD patients treated with Lecanemab. 

When monoclonal antibody drugs are used to 
treat AD patients, patients with CAA comorbidity 
are more likely to have the risk of cerebral edema 
and cerebral hemorrhage, which provides new ideas 
for the possible mechanism of the poor prognosis of 
drugs. More importantly, the diagnosis and related 
pathological changes of CAA - especially asymp-
tomatic CAA, should be paid attention to because 
it is closely related to the treatment and prognosis 
of patients. 

4. CONCLUSION AND FUTURE WORK

In conclusion, we summarized the clinical diag-
nostic methods and related biomarkers for AD and 
CAA patients and discussed the adverse progno-
sis associated with CAA when using monoclonal 
antibody drugs to treat AD patients in clinical 
treatment. These results suggest that there may 
be a large number of asymptomatic CAA patients 
in clinical practice. Although the diagnosis and 
treatment of CAA have been paid more and more 
attention, the pathogenic mechanism of CAA is 
still uncertain, and the existing clinical diagnostic 
methods cannot confirm CAA. Therefore, the dis-
covery of specific markers of CAA is critically im-
portant for the early diagnosis and late treatment of 
the disease. In the future, it will possibly use omics 
research to seek CAA relative molecular markers 
and the common targets of CAA and AD and ex-
plore the relevant pathogenic mechanisms to clin-
ically diagnose CAA. And when treating patients 
with CAA and AD comorbidities, it can adverse 
outcomes such as cerebral hemorrhage and edema 
caused by CAA can be avoided, and the survival 
rate of patients.
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