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Neural mechanisms underlying painful 
diabetic neuropath

Peng Liua, Yan Chenb, Xu Zhangc, Chao Mad

Abstract: Painful diabetic neuropathy (PDN), a prevalent com-
plication of diabetes, has become a significant public health con-
cern. It is characterized by nerve damage induced by chronic 
hyperglycemia, leading to pain, tingling, and numbness, predom-
inantly in the hands and feet. This review comprehensively ex-
plores the neural mechanisms underlying PDN, emphasizing the 
dorsal root ganglion (DRG) as a central hub for pain initiation 
and transmission. In the periphery, dysregulated pathways in 
the DRG, including ion channel dysfunction, mitochondrial ab-
normalities, impaired glucose metabolism, and inflammatory dis-
turbances, contribute to the hyperexcitability of nociceptors 
and the amplification of pain signals. In the central nervous sys-
tem, PDN is characterized by structural and functional changes 
in the spinal dorsal horn and higher brain centers, leading to 
central sensitization and altered pain processing. The review 
also highlights the role of epigenetic regulation and emerging 
insights from single-cell RNA sequencing in understanding PDN. 
By integrating these peripheral and central mechanisms, future 
research can focus on developing targeted therapies and multi-
modal treatment strategies to improve patient outcomes. 
Keywords: Painful diabetic neuropathy; Diabetes mellitus; Dor-
sal root ganglia; Spinal cord; Brain.

INTRODUCTION

Diabetes mellitus, often called diabetes, encompasses a group of met-
abolic disorders characterized by chronic hyperglycemia resulting 
from defects in insulin secretion, insulin action, or both. As of 2021, 
there are approximately 529 million individuals living with diabetes 
worldwide, affecting around 10% of the global population, with the 
prevalence rising annually. [1-3]. In China, the prevalence of diabe-
tes is 12.8% [4], making it a major public health concern due to its 
high incidence [5,6]. Among the various complications associated 
with diabetes, painful diabetic neuropathy (PDN) is one of the most 
debilitating, affecting approximately one-third of diabetic patients. 
[7,8]. The healthcare costs related to the treatment of PDN are approx-
imately double those incurred by patients without neuropathy or with 
non-painful diabetic neuropathy [9]. The prevalence of PDN increases 
in parallel with the rising prevalence of diabetes [10,11].

Substantial evidence has shown that both the peripheral nervous 
system (PNS) and the central nervous system (CNS) are critically in-
volved in the pathophysiology of PDN [12]. In this review, we aim to 
comprehensively examine the neural mechanisms of PDN, integrating 
insights from the PNS to the CNS. By exploring these interconnected 
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systems, we aim to provide a framework for under-
standing PDN pathophysiology and identifying po-
tential therapeutic targets that address both periph-
eral and central mechanisms.

PERIPHERAL MECHANISMS OF PDN

Pain perception begins in the dorsal root ganglia 
(DRG), where nociceptors, specialized sensory 
neurons, detect noxious stimuli including mechan-
ical injury, extreme temperatures, or chemical ir-
ritants [13]. DRG neurons, as pseudo-unipolar 
cells, connect peripheral tissues such as the skin, 
muscles, joints, and mucosa with the spinal dor-
sal horn, where nociceptive signals are relayed to 
higher CNS center [14,15]. These neurons, lacking 

protective structures such as the blood-brain bar-
rier and being surrounded by dense blood vessels, 
are particularly susceptible to toxic circulating sub-
stances [16-18]. Chronic hyperglycemia and related 
metabolic disorders disrupt the normal function of 
DRG in PDN, leading to structural and functional 
changes in nociceptors [19-21]. These peripheral 
mechanisms include biochemical and genetic al-
terations in DRG neurons and changes in the met-
abolic and inflammatory microenvironment, all 
of which collectively contribute to abnormal pain 
signaling. The following sections delve into these 
mechanisms, emphasizing the pivotal role of the 
DRG as a critical interface between peripheral and 
central pain pathways. The mechanism diagram is 
shown in Fig. 1. 
 

Figure 1. Molecular mechanisms of painful diabetic neuropathy in DRG.

Hyperglycemia and insulin signaling disor-
ders induce a variety of molecular impairments 
in the DRG, leading to the development of neu-
ropathic pain. These impairments include mito-
chondrial dysfunction, ion channel dysregulation, 
glucose-metabolism, and inflammation-signal ex-
acerbation. The red arrow represents up-regulation 

and the green arrow represents down-regulation. 
NADH, nicotinamide adenine dinucleotide, re-
duced form; NADP, nicotinamide adenine dinu-
cleotide phosphate; TRPA1, transient receptor 
potential ankyrin   1; TRPV1, transient receptor 
potential vanilloid 1; AMPK, AMP-activated pro-
tein kinase; PKC, protein kinase C; NF-κB, nuclear 
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factor kappa B; AKT, protein kinase B; PI3K, phos-
phoinositide 3-kinase; IGF-1, insulin-like growth 
factor 1; PGC1α, peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha; SIRT1, sirtu-
in 1; SIRT2, sirtuin 2; TFAM, transcription factor 
A, mitochondrial; TCA cycle, tricarboxylic acid 
cycle; ROS, reactive oxygen species; SP, substance 
P; mtDNA, mitochondrial DNA; TNF-α, tumor ne-
crosis factor-alpha. The “p” in the insulin signaling 
pathway in the figure represents phosphorylation.

1. BIOCHEMICAL AND GENETIC 
FOUNDATIONS OF DRG DYSFUNCTION 
IN PDN

1.1 Biochemical and genetic alterations

Numerous studies utilizing gene chips, tissue se-
quencing, and multi-omics approaches have demon-
strated significant changes in gene and protein 
expression in the DRG during PDN progression. 
Transcriptomic analysis of DRG from PDN patients 
revealed widespread gene expression changes, 
with 844 differentially expressed genes identified. 
These include upregulation of inflammation-relat-
ed transcripts (e.g., macrophage-related genes) and 
downregulation of neuronal marker genes, impli-
cating intraganglionic inflammation and neuronal 
loss as pivotal contributors to pain hypersensitivity 
and nerve dysfunction [22]. In addition, integrated 
multiomics analyses, including metabolomics, pro-
teomics, and phosphor-proteomics, identified sig-
nificant reductions in amino acids and phospholipid 
metabolites essential for cellular maintenance in 
DRG affected by DPN when compared to healthy 
controls. These changes were accompanied by ex-
tracellular matrix remodeling and alterations in 
mRNA processing, further supporting the role of 
metabolic and structural dysregulation in DRG pa-
thology [23]. These findings collectively highlight 
the intricate interplay between hyperglycemia and 
genetic regulation in PDN. These alterations span 
processes such as inflammation, ion channel regula-
tion, sensory loss, and molecular pathways change.

Pain-associated genetic changes in PDN have 
also been extensively studied. For instance, RNA 
sequencing of DRG in the type 1 diabetic (T1D) 
model, an autoimmune condition characterized by 
insulin deficiency [24], identified 66 differentially 
expressed transcripts four weeks post-induction, 
among which several genes were related to hyper-
algesia or analgesia, in addition to those linked to 

inflammation and cell survival [25]. Type 2 diabe-
tes (T2D), which accounts for the majority of cas-
es, is primarily driven by insulin resistance and 
initial hyperinsulinemia, subsequently, the ability 
of pancreatic β cells to produce insulin gradually 
decreases [26]. Proteomic analyses of DRG and 
sciatic nerve in db/db mice which is a T2D model 
revealed dysregulated metabolic pathways, includ-
ing reduced glycolysis, tricarboxylic acid cycle 
(TCA) cycle metabolism, and increased oxidative 
stress-related proteins. These findings emphasize 
energetic deficiencies as a key mechanism of neuro-
degeneration [27]. These proteomic changes inter-
act through multiple pathways, affecting neuronal 
function and the neural microenvironment, which 
ultimately leads to the abnormal transmission of 
pain signals and is closely related to the occurrence 
and development of pain in PDN. A genome-wide 
screen of microRNAs (miRNAs) of DRG in a strep-
tozotocin (STZ)-induced diabetic mouse model 
identified miR-33 and miR-380 as critical regula-
tors of nociceptive hypersensitivity, and miR-124‑1 
as a mediator of physiological nociception [28]. The 
studies on pain-associated genetic changes in PDN 
across different diabetic models uncover multiple 
underlying mechanisms related to nociception, 
which can potentially guide the understanding and 
development of strategies for managing and treat-
ing PDN. 

Gene expression changes in the DRG appear to 
be dynamic and correlate with the progression of 
diabetes. In the STZ-induced diabetic rat model, 
gene expression studies have shown stage-specif-
ic patterns. At one-week post-induction, sensory 
and motor nerve conduction velocities (NCVs) re-
main unchanged, while glucose metabolism-relat-
ed genes are upregulated. At four and eight weeks, 
NCVs exhibit significant reductions, with extra-
cellular matrix genes downregulated and synap-
tic vesicle-related genes consistently upregulated 
across all time points [29]. Notably, the transcrip-
tional changes in late diabetes reflect that DRG is 
trying to maintain homeostasis despite metabolic 
stress, which is suggested by altered gene pathways 
related to cellular stability and regenerative efforts 
[22]. Similarly, transcriptome analysis showed that 
the immune pathways of the sciatic nerve and DRG 
gradually changed at 8,16, and 24 weeks of age in 
db/db diabetic mice. These changes suggest that hy-
perglycemia-induced nerve damage precedes and 
drives transcriptional dysregulation over the dis-
ease course [30]. The dynamic and region-specific 
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nature of gene expression alterations underscores 
the need for stage-specific therapeutic strategies, 
targeting early sensory and motor nerve conduc-
tion deficits and later metabolic disturbances, im-
mune-mediated or structural damage.

Emerging evidence highlights the significant 
role of epigenetic regulation in PDN. These molecu-
lar mechanisms not only influence gene expression 
but also contribute to the onset and progression of 
the disease. A study demonstrated alterations in 
miRNAs patterns, noting that in T1D mice, there is 
an upregulation of miRNAs-mediated mRNAs pro-
cessing at cytoplasmic sites (GW/P bodies), accom-
panied by a downregulation of let-7i and a remark-
able increase in miR-341 [31]. RNA sequencing 
data revealed 11 circular RNAs (circRNAs) and 14 
mRNAs significantly correlated with the circRNAs 
expression profiles in the DRG of the PDN model, 
with circRNA.4614 being notably upregulated [32]. 
These findings underscore the intricate epigenetic 
landscape of DPN, highlighting miRNAs and cir-
cRNAs as pivotal regulators of gene expression and 
potential therapeutic targets for mitigating neuro-
pathic pain.

1.2. Mitochondrial dysfunction 
and oxidative stress

Patients with PDN are often accompanied by system-
ic hyperglycemia. High levels of glucose and fatty 
acids in DRG neurons are metabolized through mi-
tochondria. This metabolic process involves trans-
fer of electrons from substrates to produce electron 
donors such as nicotinamide adenine dinucleotide 
(NADH), which then transfer electrons along the 
mitochondrial respiratory chain to drive ATP syn-
thesis via oxidative phosphorylation (OXPHOS) 
[33]. However, various alterations in DRG mito-
chondria in PDN patients lead to increased pro-
duction of reactive oxygen species (ROS) during 
metabolism. These ROS can inhibit key mitochon-
drial components, resulting in mitochondrial dys-
function [34]. Proteome analysis of DRG and the 
sciatic nerve in T2D mice has revealed changes in 
proteins involved in glutathione metabolism and 
antioxidant activity[27]. In addition, elevated lev-
els of 3-nitrotyrosine and hydroxyoctadecadienoic 
acids ( HODEs ) were observed in DRG, which is 
a marker of protein oxidation and lipid peroxida-
tion [35]. Deep-proteome profiling of the high-fat 
diet (HFD) -induced PDN models further revealed 
that proteins related to mitochondrial fission, such 

as dynamin-related protein 1 (Drp1), mitochondrial 
fission 1 protein (Fis1), and mitochondrial fission 
factor (Mff), were significantly upregulated in the 
DRG. This result suggests that mitochondria in 
the DRG of these diabetic mice undergo fragmenta-
tion and apoptosis at the onset of mechanical pain 
[36]. Furthermore, levels of proteins related to the 
TCA cycle and the mitochondrial respiratory chain 
were decreased in DRG neurons of long-term dia-
betic rats [37], highlighting that mitochondrial ox-
idative stress plays an important role in the patho-
genesis of PDN.

The role of mitochondrial dysfunction in PDN 
is further emphasized by the involvement of per-
oxisome proliferator-activated receptorγcoacti-
vator-1α (PGC-1α), which functions as a co-tran-
scriptional activator that regulates the expression 
of various mitochondrial proteins [38,39]. PGC-1α 
and adenosine monophosphate-activated protein ki-
nase (AMPK) signaling were inhibited in DRG of 
diabetic rodent models [40]. This reduction likely 
impairs PGC-1α to regulate the mitochondrial en-
vironment and scavenge ROS, thereby contributing 
to the oxidative stress observed in diabetic patients 
[41,42]. It further suggests that PGC-1α dysfunction 
weakens the antioxidant defenses in DRG neurons, 
making them more vulnerable to oxidative damage 
and exacerbating PDN [43]. In addition to PGC-1α, 
mitochondrial transcription factor A (TFAM) also 
plays a crucial role in maintaining mitochondrial 
function [44]. TFAM enhances mitochondrial DNA 
expression in peripheral DRG neurons [45,46], and 
a decrease in both mitochondrial DNA and TFAM 
levels has been observed in chronic diabetic mod-
els. Overexpression of TFAM has been shown to 
rescue these defects, protecting DRG neurons from 
oxidative stress [47,48]. This highlights the poten-
tial for targeting TFAM expression as a therapeu-
tic approach to mitigate mitochondrial dysfunction 
in PDN. Furthermore, sirtuins (SIRTs), which are 
NAD+-dependent enzymes involved in mitochon-
drial regulation, also contribute to the mitochon-
drial health of DRG neurons [49]. Activation of 
the SIRT1-PGC-1α pathway by overexpression of 
SIRT1 has been shown to protect neurons from 
DPN injury [50]. Overexpression of SIRT2 enhanc-
es polyol pathway activity and promotes the growth 
of cultured DRG neurons, and the use of aldose re-
ductase inhibitors to increase SIRT2 and PGC-1α 
expression may provide a strategy to promote neu-
ronal regeneration and mitigate the effects of PDN 
[51]. Taken together, these findings underscore the 
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critical role of mitochondrial dysfunction and ox-
idative stress in the pathophysiology of PDN. The 
dysregulation of mitochondrial proteins, the down-
regulation of protective factors such as PGC‑1α, 
TFAM, and sirtuins, and the accumulation of 
ROS all contribute to neuronal damage and pain 
hypersensitivity. 

1.3. Ion channel dysregulation 
and nociceptor hyperexcitability

Ion channel dysregulation is a fundamental con-
tributor to the hyperexcitability of nociceptors ob-
served in PDN. The increased excitability of senso-
ry neurons directly contributes to the development 
and maintenance of PDN [52,53]. In particular, the 
plasticity and activity of ion channels in DRG neu-
rons are crucial for regulating overall cellular excit-
ability and nociceptive signaling [2,54,55]. Key ion 
channels and receptors implicated in PDN include 
sodium channels (Nav), potassium channels (K), 
calcium channels (Cav), transient receptor poten-
tial receptors (TRP), and P2X purinergic receptors 
(P2X). These molecular players collectively shape 
the pathological sensory responses of PDN.

Sodium Channels (Nav) play a crucial role in 
the development and maintenance of PDN, making 
them a key target for understanding the molecular 
mechanisms underlying this condition. In diabetic 
neuropathy, alterations in the expression of sever-
al Nav isoforms in sensory neurons have been ob-
served, which contribute to the pathophysiology 
of PDN [56,57]. Specifically, the upregulation of 
Nav1.3, Nav1.6, and Nav1.9 mRNAs, alongside the 
downregulation of Nav1.8, is associated with noci-
ceptive sensitization in diabetic models [57]. Over-
expression of miR-214-3p attenuates nociceptive 
sensitization by regulating the expression of Nav1.3 
in DRG neurons in an STZ-induced diabetic mod-
el [58]. Furthermore, activation of protein kinase C 
(PKC) in the DRG neurons of diabetic rats increas-
es Nav1.7 phosphorylation, which in turn modulates 
neural excitability [56]. A functional variant of 
Nav1.7 has also been identified in patients with id-
iopathic small fiber nerve neuropathic pain, where 
it impairs slow inactivation, leading to sustained 
hyperexcitability of DRG neurons [59]. Notably, 
Nav1.7 and Nav1.8 work synergistically in DRG 
neurons. Nav1.7 enhances the stimulus magnitude 
required to activate Nav1.8, thereby increasing no-
ciceptor sensitivity in diabetic models [55,60]. How-
ever, in multiple studies of STZ-induced diabetic 

rats, the expression of Nav1.8 protein and mRNA 
has inconsistent results [57,61-63]. The reason for 
this conflicting result is currently unknown and 
further studies are needed to validate the alteration.

Potassium Channels (Kv) play a critical role in 
modulating pain and neuronal excitability [64,65]. 
In T1D rats, the density of total potassium cur-
rent, type A current, and delayed rectifier current 
was markedly diminished in large and medium 
DRG neurons. Likewise, a significant reduction 
was observed in the Kv current of small DRG neu-
rons. [66], suggesting a general dysfunction of Kv 
in diabetic neuropathy. Notably, in late-stage PDN 
models, high levels of Kv2.1 protein expression 
have been detected in the DRG [67], indicating a 
potential compensatory response to nerve inju-
ry. Several studies have also reported a decrease 
in the mRNA and protein levels of Kv7.2, Kv7.3, 
and Kv7.5 in diabetic rat DRG neurons, along with 
a reduction in M-current density. These changes 
are associated with increased neural excitability, 
which likely contributes to the development of pain 
hypersensitivity. Such alterations in Kv expression 
may represent an activity-dependent compensatory 
mechanism aimed at limiting the hyperexcitabili-
ty of DRG neurons, a hallmark of neuropathic pain 
[68,69]. However, the overall reduction in total po-
tassium currents and the specific downregulation 
of Kv subtypes can lead to prolonged nociceptive 
signaling, further exacerbating pain responses in 
diabetic models.

Calcium Channels (Cav) play a key role in the 
development and progression of neuropathic pain, 
with their upregulation observed in DRG neurons in 
rodent models of PDN [70]. Notably, the enhance-
ment of Cav3.2 T-type isoforms in the PDN model 
contributes to the hyperexcitability of DRG neu-
rons and increased central sensitization to pain [71]. 
Glycosylation inhibitors have been shown to reduce 
Cav3.2 T-channel currents in vitro, and in vivo ad-
ministration of these inhibitors reverses both me-
chanical and thermal nociceptive sensitization in 
rodent PDN models [72]. The upregulation of Cav 
T-channels in DRG neurons during PDN amplifies 
the transmission of single action potentials from the 
periphery to the DRG, resulting in the generation of 
multiple action potentials that reach the spinal cord 
axons. This cascade amplification effect may play a 
significant role in the progression of pain through-
out different stages of PDN [73]. Furthermore, tran-
scriptome analysis of the PDN model has revealed 
that glycosyltransferases and sialic acid-modifying 
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enzymes, which are involved in modifying 
Cav3.2T function, are impaired in these conditions 
[74]. Since T-type channels lower the threshold for 
action potential firing and enhance neuronal excit-
ability, the Cav T-type isoform emerges as a crucial 
target for PDN treatment [75-77].

Transient Receptor Potential (TRP) Channels 
are a class of non-selective cation channels that 
play a critical role in the initiation of pain, and their 
dysregulation or dysfunction is implicated in the de-
velopment of PDN [78]. In T1D rats, hydrogen sul-
fide induces nociceptive hypersensitivity and loss 
of epidermal fibers by activating TRPV1, TRPA1, 
and TRPC channels [79]. Early diabetic neuropathy 
is often characterized by increased TRPV1 activity 
in DRG neurons [80]. The upregulation of TRPV1 
expression is mediated via the nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) 
pathway that is activated by α-lipoic acid (ALA) 
[81]. Activation of the TRPV1 receptor enhances 
substance P release, triggering mast cell degranula-
tion, impairing skin microcirculation, and leading 
to sensory neuron apoptosis [82]. Besides, TRPA1 
is also notably upregulated in the DRG of diabetic 
animals [83]. Activation of TRPA1 contributes to 
the development of pain in PDN [84]. The dysregu-
lation of both TRPV1 and TRPA1 channels signifi-
cantly contributes to nociceptive hypersensitivity in 
PDN, highlighting their role in the development and 
progression of pain. 

P2X purinergic receptors are non-selective li-
gand-gated cation channels that mediate ATP-in-
duced inward currents. These receptors are abun-
dantly expressed in DRG neurons and play a 
crucial role in the generation and transmission of 
pain [85,86]. The upregulation of P2X2, P2X3, and 
P2X2/3 receptors in DRG neurons is associated 
with the occurrence of abnormal mechanical pain 
in T1D mice [87]. Notably, the expression of mem-
brane-bound P2X3 receptor protein in DRG was 
significantly increased in diabetic rats, while the 
total protein level of the P2X3 receptor remained 
unchanged. This suggests that P2X3 receptors un-
dergo translocate from the cytoplasm to the cell 
membrane in PDN models [88,89], where they are 
more likely to participate in pain signaling. Addi-
tionally, the increased expression of P2X4 receptors 
in DRG neurons from diabetic rats is associated 
with neurogenic mechanical nociceptive hypersen-
sitivity [90]. This upregulation further emphasizes 
the role of P2X receptors in amplifying pain trans-
mission under diabetic conditions. Taken together, 

these findings highlight the importance of P2X 
receptors, particularly P2X4, in the pathogenesis 
of pain in diabetic neuropathy, making them po-
tential targets for therapeutic intervention in pain 
management. 

2. METABOLIC AND INFLAMMATORY 
DYSREGULATION

Metabolic and inflammatory disturbances in the 
DRG under diabetic conditions play a critical role 
in intensifying neuropathic pain in PDN. Disrup-
tion in glucose metabolism caused by sustained 
high blood glucose levels leads to the accumulation 
of glucose metabolites, exacerbating insulin resis-
tance and impairing multiple signaling pathways 
[25,27,91,92]. These metabolic perturbations are 
pivotal in the onset of peripheral neuropathy and 
pain. Insulin signaling is critical for sensory neu-
ron function, with its disruption closely linked to 
PDN development [93-95]. Insulin receptors (IRs) 
are expressed in DRG neurons and axons [96,97], 
where they activate downstream pathways, such 
as the phosphoinositide 3-kinase (PI3K) and pro-
tein kinase B (Akt) signaling cascade [98], vital 
for neuronal survival and plasticity. Decreased Akt 
phosphorylation and impaired synaptic growth in 
DRG neurons highlight the effect of insulin re-
sistance on nerve injury in ob/ob mice [99]. Insu-
lin resistance, a hallmark of T2D, increases DRG 
neurons’ vulnerability to metabolic stress, thereby 
contributing to neuropathy [100-102]. Similarly, 
insulin-like growth factor-1 (IGF-1), which shares 
signaling pathways with insulin [103], plays a neu-
roprotective role and is implicated in the develop-
ment of PDN [104-106]. For instance, the decreased 
expression of IGF-1 in nociceptive DRG neurons of 
T1D rats mediates neuropathic pain [107]. IGF-1 ac-
tivates the AMPK pathway, which is critical for mi-
tochondrial function, axon growth, and glycolysis 
[108,109]. IGF-1 overexpression in the diabetic neu-
ropathy model has been shown to prevent Schwann 
cells from hyperglycemia-induced apoptosis via 
the PI3K signaling pathway [110]. In summary, 
the disruptions in glucose metabolism and insulin 
signaling along with the roles of insulin resistance 
and IGF-1 are all integral aspects that significantly 
influence the development of PDN.

Inflammation plays a significant role in DRG 
dysfunction during PDN. Transcriptome analysis 
of PDN patients revealed a significant upregula-
tion of immune-cell marker genes. This included 
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increased expression of T cells, B cells, and mac-
rophage markers, as well as elevated levels of in-
flammatory cytokines, such as IL-1α, IL-6, and 
IL10, though tumor necrosis factor-alpha (TNF-α) 
expression showed a paradoxical decrease [22]. 
Similarly, another genomics study demonstrated 
macrophage recruitment and IL-10 upregulation in 
both the early and late stages of disease in db/db 
mice, emphasizing the dynamic nature of immune 
responses during PDN progression [30]. Further-
more, proteomic studies in T1D models corroborat-
ed significant alterations in both pro-inflammatory 
and anti-inflammatory factors within the DRG, 
suggesting a complex balance between immune 
activation and resolution during neuropathic pain 
[25]. In heat shock protein 70 knockout mice, se-
quencing results identified widespread activation of 
inflammatory pathways in the DRG, with marked 
increases in specific pro-inflammatory signals such 
as CD163, TNFα, and IL-1β [111]. These findings 
collectively support the notion that elevated levels 
of pro-inflammatory cytokines may sensitize DRG 
neurons, amplifying nociceptive signaling and me-
diating pain development.

Key cytokines such as IL-10, IL-6, and TNF-α 
play pivotal roles in these processes. IL-10, an an-
ti-inflammatory cytokine widely expressed in DRG 
neurons [112], is associated with hypoalgesia in neu-
ropathy [113] and may contribute to axon repair and 
inflammation inhibition [114]. However, decreased 
IL-10 expression in PDN models and its pain-re-
lieving effects upon recombinant supplementation 
highlight the complexity of its in inflammation and 
pain [115]. Conversely, IL-6 induces persistent hy-
perexcitability in DRG neurons, a process revers-
ible by IL-6 inhibitor, and its pro-inflammatory ef-
fects are linked to reduced AMPK activity in PDN 
[116-118]. TNF-α, another key inflammatory medi-
ator [119], shows differential roles, contributing to 
acute hypoalgesia [120,121] and axonal damage via 
the NF-κB pathway in diabetic models [122], while 
targeted overexpression in DRG has been shown to 
alleviate T1D-induced pain [123]. In conclusion, 
these key cytokines have diverse and complex roles 
in the development of PDN, highlighting the impor-
tance of further understanding their functions for 
potential therapeutic interventions. 

3. EMERGING INSIGHTS

Recent advances in single-cell RNA sequencing 
(scRNA-seq) have transformed our understanding 

of PDN. This technology allows for comprehen-
sive, multidimensional analysis that goes beyond 
single-pathway approaches, offering unprece-
dented insights into the cellular and molecular 
landscapes of the DRG. Over recent years, bio-
informatic tools have evolved rapidly, enabling 
a shift from traditional single-pathway studies 
to integrative approaches that provide a holistic 
understanding of the complex mechanisms under-
lying PDN. Among these advances, scRNA-seq 
technology has emerged as a powerful tool, offer-
ing unprecedented resolution in mapping gene ex-
pression within the DRG [124]. Single-cell RNA 
sequencing has revealed remarkable heterogene-
ity within the DRG, uncovering novel neuronal 
subpopulations associated with somatosensory 
neurons [125,126]. Among these, a newly iden-
tified group of neurons, termed MAAC (Fxyd7+/
Atp1b1+), was characterized by elevated expres-
sion of neurofilament and cytoskeletal-related 
genes [127]. Fxyd7, a type I membrane protein ex-
pressed in the brain, is known to regulate neural 
excitability [128], while Atp1b1 is a key subunit 
of the Na+/K+-ATPase (NKA) complex. Dysreg-
ulation of NKA activity has been observed in 
PDN patients [129], underscoring its relevance in 
pain mechanisms [130,131]. Similarly, in an HFD 
mouse model, increased expression of Mas-re-
lated G protein-coupled receptor d (Mrgprd) was 
observed in a DRG subpopulation [132]. Mrgprd 
activation was linked to enhanced DRG excit-
ability in PDN models. Another intriguing dis-
covery involves Nageotte nodules, neuroma-like 
structures abundant in the DRG of PDN patients. 
Spatial transcriptomics revealed high secret-
ed phosphoprotein 1 (SPP1) expression in these 
nodes, potentially contributing to axonal degen-
eration and nociception via endoplasmic reticu-
lum stress and extracellular matrix remodeling 
[23,133]. Targeting SPP1 or its translational regu-
lation, such as through eukaryotic initiation factor 
4E (eIF4E) inhibitors, could offer new therapeutic 
avenues [134-137].

THE CENTRAL MECHANISM OF PDN

1. Changes in the spinal dorsal horn

Peripheral changes in PDN set the stage for the 
amplification of nociceptive signals. However, 
pathological changes do not remain confined to the 
periphery. As nociceptive signals travel through 
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the spinal cord and ascend to higher brain centers, 
they undergo further modulation, ultimately con-
tributing to the development of central sensitiza-
tion and abnormal pain processing in PDN. The 
central nervous system, including the spinal cord 
and brain, plays a pivotal role in integrating and 
amplifying these nociceptive inputs, transform-
ing acute pain into a chronic, debilitating condi-
tion [138]. To fully understand the mechanisms of 
PDN, it is essential to examine how spinal con-
nectivity and brain dysfunction work in concert to 
exacerbate pain perception and how these central 
changes interact with peripheral sensitization to 
maintain chronic pain. 

The spinal dorsal horn serves as a critical re-
lay and processing hub for nociceptive inputs from 
DRG neurons. Aδ and C fibers of DRG neurons 
terminate in the superficial layer of the dorsal 
horn, where they connect with projection neurons 
and interneurons, forming intricate excitatory and 
inhibitory networks essential for various sensory 
processing [139-141]. In PDN, enhanced nocicep-
tive input from DRG neurons induces morpho-
logical changes in spinal dorsal horn neurons and 
disrupts spinal cord inhibition circuits, resulting in 
central sensitization and amplified pain perception 
[142,143]. For instance, the upregulation of me-
tabotropic glutamate receptor 5 (mGluR5) increas-
es synaptic excitability of spinal dorsal horn neu-
rons, thereby facilitating pain signal transmission 
[144]. Additionally, rac1 signaling has been shown 
to remodel dendritic spines in spinal laminae IV-
V, heightening spinal neuron sensitivity to DRG 
inputs and lowering the threshold for mechanical 
nociceptive pain [143]. Neurotropic factors such 
as nerve growth factor (NGF) exhibit dynamic ex-
pression patterns in the spinal dorsal horn and DRG 
during PDN, contributing to hyperalgesia and aber-
rant pain responses [145]. Concurrently, decreased 
expression of opioid receptors on primary afferent 
fibers impairs endogenous pain suppression and 
reduces the efficacy of opioids in the treatment of 
pain caused by PDN [146]. Glial cells in the spinal 
cord also play a significant role in pain signal mod-
ulation. For example, activated glial cells release 
brain-derived neurotrophic factor (BDNF), which 
exacerbates mechanical pain in PDN [147,148]. 
Furthermore, dysregulation of sodium channels in 
DRG neurons, along with phosphorylation of the 
p38 mitogen-activated protein (MAP) kinase path-
way in spinal microglia, perpetuates mechanical 
pain [149].

2. Structural and functional changes 
in the brain

Beyond the spinal cord, dysfunction in higher brain 
centers also contributes to PDN. Sensory informa-
tion from the dorsal horn is relayed to the brain via 
ascending pathways, including the spinothalamic 
and spinoreticular tracts, which transmit signals 
to the thalamus, somatosensory cortex [150], and 
other brain regions involved in pain perception and 
modulation [151]. PDN is associated with signifi-
cant structural and functional alterations in higher 
brain centers. Magnetic resonance imaging (MRI) 
studies reveal reduced gray matter in the primary 
somatosensory cortex, supramarginal gyrus, and 
cingulate cortex in patients with diabetic neurop-
athy. This reduction is more pronounced in PDN 
patients compared to those with non-painful dia-
betic neuropathy, reflecting the impact of chronic 
pain on cortical structures [152]. Additionally, ab-
normal neuronal and axonal activity markers have 
been identified in the dorsolateral prefrontal cortex 
(DLPFC), highlighting potential disruptions in pain 
processing circuits [153]. 

Changes in functional connectivity further em-
phasize the brain’s alteration in pain modulation in 
PDN. Reduced functional connectivity between the 
thalamus and cortex manifests as abnormalities in 
the dorsal and ventral attentional networks, as well 
as the dorsal anterior cingulate cortex (ACC). These 
disruptions impair synchronous brain activity, en-
hancing the processing of pain signals and con-
tributing to heightened pain perception [154,155]. 
Electrophysiological studies corroborate these find-
ings, showing diminished inhibitory functions in 
the cerebral cortex of diabetic neuropathy patients 
[150]. This loss of inhibition may lower the thresh-
old for pain signal amplification, compounding the 
experience of chronic pain. These data indicate that 
structural and functional alterations in higher brain 
centers involved in pain perception and modulation 
contribute to the development and exacerbation of 
PDN (Fig. 2).

The abnormal nociceptive input is transmit-
ted from DRG neurons to the spinal dorsal horn, 
resulting in morphological changes in the spinal 
cord and affecting the spinal cord’s transmission of 
pain signals to the brain. The ascending pathway 
of pain starts from the spinal cord, passes through 
the brainstem, and the midbrain passes upward 
to the sensory cortex. This process may also lead 
to the occurrence of complications such as fear, 
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anxiety, and depression in patients with painful 
diabetic neuropathy. The descending of PDN from 
the brain to the spinal cord promotes or inhibits the 
dysfunction of the pain pathway. The purple box is 
the transmission level of pain signals, the red box 
is the ascending pathway, and the green box is the 
descending pathway. Arrows represent different 
pain ascending and descending pathways. PFC, 
prefrontal cortex; ACC, anterior cingulate cortex; 
SMG, supramarginal gyrus; AMG, amygdala; HT, 
hypothalamus; VPL, ventral posterolateral nucleus; 
PBN, parabrachial nucleus; LC, locus coeruleus; 
NTS, nucleus tractus solitarius; CN, caudate nu-
cleus; A7, noradrenergic cell group A7; A5, norad-
renergic cell group A5; PAG, periaqueductal gray; 
RVM, rostral ventromedial medulla; Rac1, Ras-re-
lated C3 botulinum toxin substrate 1; NGF, nerve 
growth factor; BDNF, brain-derived neurotrophic 
factor; SP, substance P. This figure is concluded by 
referring to two reviews [151,156].

3. Dysregulation of pain signal 
and psychological comorbidities in PDN

Abnormal pain-signal transmission in PDN in-
volves multiple pathways and regions, including 
the thalamus, periaqueductal gray (PAG), rostral 

ventromedial medulla (RVM), and cingulate cor-
tex [151]. Changes in thalamic ventral posterolat-
eral (VPL) neurons have been observed in PDN, 
with increased spontaneous and evoked activity in 
response to tactile stimuli [157]. These changes in 
the thalamus are consistent with the enhanced noci-
ceptive input to the spinal dorsal horn, emphasizing 
the key role of the thalamus in amplifying abnor-
mal pain signals [158]. Studies in diabetic animal 
models have revealed alterations in descending 
pain modulation systems, which transmit signals 
from higher brain centers to the spinal cord. For in-
stance, In PDN models, decreased PAG activation 
and abnormal rostral ventromedial medulla (RVM) 
cell activity impair the descending regulation of 
pain and consequently exacerbate hyperalgesia 
[159-161]. The balance between nociceptive sig-
nal promotion and inhibition is disrupted in PDN, 
contributing to the development and persistence of 
neuropathic pain. 

Beyond structural and functional changes, PDN 
is associated with significant psychological comor-
bidities, including anxiety, depression, and sleep 
disturbances. Dysregulation of the amygdala, driv-
en by persistent nociceptive input, likely plays a key 
role in these manifestations [162,163]. Functional 
MRI studies have highlighted abnormal activity in 

Figure 2. Overview of central neural pathways involved in painful diabetic neuropathy.
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regions such as the dorsal anterior cingulate cortex 
and thalamus, which may mediate the interplay be-
tween chronic pain and emotional dysregulation 
[154]. Additionally, disruptions in brain region con-
nectivity, particularly in the dorsal and ventral at-
tentional networks, contribute to the cognitive and 
emotional challenges faced by PDN patients [155]. 
These findings suggest that PDN extends beyond 
physical pain, profoundly impacting the overall 
mental well-being of affected individuals.

CONCLUSIONS

PDN presents a complex clinical challenge, with 
its prevalence increasing annually alongside the 
growing global burden of diabetes. This review 
highlights the pivotal role of the DRG in the patho-
genesis of PDN, from peripheral mechanisms to 
CNS alterations. Emerging evidence underscores 
the DRG as a crucial hub for pain initiation and 
transmission, with numerous molecular, cellular, 
and circuit-level changes contributing to the devel-
opment and maintenance of neuropathic pain. In 
the periphery, dysregulated pathways in the DRG, 
including ion channel dysfunction, impaired glu-
cose metabolism, and mitochondrial abnormal-
ities, have been identified as key contributors to 
PDN pathogenesis. These insights have paved the 
way for targeted therapeutic interventions, such as 
gene therapies, RNA-based treatments, and innova-
tive drug delivery systems using nanotechnology. 
While most of these strategies remain in preclinical 
stages, they hold immense potential for improving 
treatment specificity and reducing systemic side 
effects. In the CNS, PDN is associated with struc-
tural and functional changes, including gray matter 
reduction, altered neurochemical levels, and dys-
regulated descending pain modulation pathways. 
These central changes amplify pain perception and 
contribute to emotional comorbidities, such as anx-
iety and depression. Understanding the interplay 
between peripheral and central mechanisms is crit-
ical for developing comprehensive treatments that 
address both the nociceptive and affective dimen-
sions of PDN.

Future therapeutic directions must focus on 
bridging the gap between preclinical findings and 
clinical applications. Key priorities include: (1) 
Mechanistic exploration: elucidating the specific 
roles of DRG neuronal subpopulations and their in-
teractions with non-neuronal cells. (2) Advancing 
targeted therapies: leveraging nanotechnology, gene 

editing, and bioinformatics to refine drug delivery 
and develop precision medicine approaches. (3) En-
hancing translational research: conducting robust 
clinical trials to validate preclinical discoveries and 
assess the long-term efficacy and safety of novel in-
terventions. Additionally, non-pharmacological ap-
proaches such as DRG stimulation, photobiomod-
ulation therapy (PBMT), and electroacupuncture 
(EA) have shown promise in preclinical and early 
clinical studies [164-166]. These strategies may 
complement pharmacological treatments, offering a 
multimodal approach to PDN management.

In summary, the pathophysiology of PDN spans 
a continuum from peripheral to central systems. By 
combining molecular and systems-level approach-
es, future research can unravel the intricate network 
underlying PDN, ultimately leading to innovative 
treatments that improve patient outcomes and qual-
ity of life.
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