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ABSTRACT
Brain structural and cerebrovascular changes and neurodegenerative 
pathologies are common and inadequately elucidated health problems 
in aging brains. Prospective population-based neuropathological studies 
play a unique role in neuropathological research. Brain weight decrease, 
arteriopathy, venular collagenosis, capillary loss, and accumulation 
of abnormal proteins are significant pathologies in the aging process. 
However, studies based on true population samples are scarce, and there 
is an ambiguity regarding the pathogenic proteinopathy between normal 
aging and neurodegenerative disease. Therefore, together population-
based pathological studies offer an insight into the brain changes and 
diseases in the aging process, which could bring progress in the research 
for mechanisms and therapeutic interventions. Here, we reviewed findings 
from truly population-based pathological studies of brain aging and a range 
of neurodegenerative markers to better characterize brain pathological 
changes.
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1. Introduction

The increase in average life expectancy warrants 
insight into aging. Neuropathologically, 
brain weight decrease, arteriopathy, venular 
collagenosis, and capillary loss become more 
notable with aging, and some neurodegenerative 
changes, accumulation of abnormal proteins 
in brain tissue and cerebrovascular walls, are 
also prevalent in the old (Dugger & Dickson, 
2017). Thus, companies with normal aging, and 
neurodegenerative diseases are common and 
complex health problems in the more ageing 
population (Hou et al., 2019; Kritsilis et al., 2018). 
Despite considerable advances in understanding 
its molecular and cellular underpinnings, 
neurodegenerative diseases with aging remain 
neither elucidated nor curable.

In particular, population-based clinicopathological 
studies might reveal new leads toward healthy 
aging and potential clues to overcoming age-related 
diseases (J. Zaccai et al., 2006). The neuropathologic 
biospecimens should come from prospective 
population-based cohort studies. Before autopsy, 
their participants should have long follow-up phases 
with well-recorded cognition, motor performance, 
and personality assessments. However, few cohort 
studies can fulfil such requirements.

Population studies can be generally divided into 
two categories: one conducted in patients or 
specific special populations, and the other shown 
in the local community intending to represent 
the general population. Studies focusing on 
Alzheimer’s disease, Parkinson’s disease, and other 
neurodegenerative markers, including the Hisayama 
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study, the Cambridge City over-75s Cohort 
(CC75C), the Vantaa 85+ Study, the Cognitive 
Function and Ageing Study (CFAS), the Honolulu-
Asia Aging Study (HAAS), the Cache County Study 
on Memory and Aging (CCSMA), and the Adult 
Changes in Thought (ACT) Study, are strengthened 
in minimizing selection bias; however, they still face 
challenges in terms of keeping longitudinal follow 
up over decades and increasing tissue donation 
rate. On the other hand, studies among community-
dwelling or specific selected populations may be 
less representative of the whole population due to 
sample selection bias. At the same time, they have 
the advantage of high clinical follow-up and autopsy 
rates. A combination of these approaches can be 
used to clarify the remaining areas of uncertainty.

Here we review evidence from population-
based, clinicopathological studies of brain aging 
and neurodegenerative diseases to describe 
the changes, examine various hypotheses, and 
rationally select avenues for future investigation.

2. Characteristics of population-based 
prospective cohort studies

Seven studies were eligible as accurate population-
based neuropathological studies among older people 
with standardized enrollment, regular follow-up 
assessment, and proper neuropathological methods.

The earliest neuropathological study among 
the general population is the Hisayama study, a 
prospective cohort study in a typical rural area in 
Japan from 1961, to evaluate the risk factors for 
lifestyle-related diseases (Ninomiya, 2018; Julia 
Zaccai et al., 2006). The study recruited 1,436 
eligible subjects aged 40 or older in the beginning, 
and from 1985, the prevalence of dementia was 
investigated among residents aged 65 and over.

In Europe, CC75C (http://www.cc75c.group.cam.
ac.uk), one of the oldest old’s most extensive 
population-based pathological studies begins 
in 1985 and aims to measure the prevalence of 
dementia (Fleming et al., 2007). The original 
project enrolled 2,166 men and women aged 75 
and above in Cambridge with a high response 
rate of 95%, and followed over the next 2 years 
after enrollment, as early named the Hughes Hall 
Project for Later Life and in publications. Then 
this cohort changed its name to the Cambridge 
Project for Later Life since the population 

has continued to follow up to the present day 
supported by a college of Cambridge University. 
Participants were then assessed with similar 
questionnaires every 3 or 4 years until 10 waves 
of data were collected. Another European study, 
the Vantaa 85+ Study, enrolled individuals at least 
85 years old from 1991 in the city of Vantaa in 
Southern Finland. Among 553 subjects enrolled 
in the study, the response rate was about 92%. The 
Vantaa 85+ study focused on the characterization 
of the common age-related pathologies in the 
elderly Finnish population and the identification 
of their genetic background. CFAS (http://www.
cfas.ac.uk), also known as the Medical Research 
Council (MRC) CFAS, was the most extensive 
population-based clinicopathological study in 
Europe and was designed to test for geographical 
differences (in six geographical areas) in dementia 
prevalence in the UK among adults over 65 years 
from 1989 to 1994 (Brayne et al., 2006). Indeed, 
the UK CFAS included three programs (Matthews 
et al., 2013). Data from Cambridge shire, 
Newcastle, and Nottingham of MRC CFAS were 
selected to provide CFAS I estimates. Between 
2008 and 2011, to compare with CFAS I, CFAS II  
estimates in the same geographical areas were 
conducted. Recruitment for CFAS Wales, which 
aimed to interview a representative sample of 
3,750 people aged 65 and over in two regions of 
Wales (Gwynedd and Swansea), began in 2011, 
with the follow-up wave completed in early 2016.

Longitudinal population-based studies in the 
USA started in the 1990s. HAAS is a part of the 
Honolulu Heart Program, and it prospectively 
collected information from the cohort of Japanese-
American men to compare rates of dementia. 
CCSMA started in 1995, and the study enrolled 
5,092 permanent residents of Cache County, Utah 
(USA) (Tschanz et al., 2005). The study was 
designed to investigate environmental and genetic 
factors related to the risk for Alzheimer’s disease 
(AD) and other forms of dementia.

The above studies are truly population-based but 
with relatively low autopsy rates as a potential 
weakness. Studies among community-dwelling 
elderly and religious orders who agree to annual 
clinical evaluation and organ donation could 
make up for the shortcomings.

ACT study, a prospective community-based cohort 
study, enrolled men and women older than 65  
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who are members of the Group Health GH in 
the Seattle region, a well-established health 
maintenance organization. The original cohort 
enrolled 2581 individuals between 1994 and 1996, 
and an expansion cohort enrolled 811 individuals 
between 2000 and 2002. To replace people who 
die or drop out, the study re-enrolled in 2004.

The Nun Study enrolled individuals of Catholic 
School Sisters of Notre Dame, the USA, from 
1986. The Nun Study remains one of the few 
longitudinal studies with complete records, 
including early life risk factors, the incidence 
of dementia, and neuropathologic findings at 
autopsy. Confounding from a wide variety of 
factors was minimized. The Religious Orders 
Study (ROS) and the Rush Memory and Aging 
Project (MAP) also enrolled selected populations 
with high follow-up rates (>90% among 
survivors) and autopsy rates (> 90%). ROS began 
enrolling Catholic nuns, priests, and brothers 
across 1994 the USA. To register participants 
with a much more comprehensive range of life 
experiences and socioeconomic status, in 1997, 
MAP enrolled 952 persons with an emphasis 
assessment on cognition, motor function, and risk 
of AD (Bennett et al., 2012; Bennett et al., 2005).

In addition, some autopsy cohorts are selected 
from a defined population, such as the Georgia 
Centenarian Study, the Mayo Clinic Study of 
Aging, and the Vienna Trans-Danube Aging 
study et al., which have revealed extensive 
findings concerning dementia and aging process. 
However, different selection biases exist in these 
studies, resulting in limitations in the inferences 
drawnfrom the community.

3. Gross neuropathology

At autopsy, brain structure is one of the first 
observations and undergoes considerable changes 
throughout human life. Average fresh brain weight 
is 1200-1400g, which for the adult male was 1336g 
and for the adult female 1198g (Hartmann et al., 
1994). Brain weight and volume start to decline 
at around 45 to 50 years and reach their nadir 
after 70-86 years (Dekaban, 1978; Peters, 2006). 
As for gender, brain weight decreases by 2.7g in 
males and by 2.2g in females per year (Hartmann 
et al., 1994). In particular, specific areas of the 
brain responsible for cognitive functions, namely 
the frontal lobe and hippocampus, shrink more 

than other areas. The previous study showed 
that the average brain weight of 100-year-olds 
was 1097g, and it was relatively well-preserved 
in centenarians (aged 100 or more) (J. Zaccai 
et al., 2006) and supercentenarians (aged 110 
years old or more) (Takao et al., 2016). The 
gross neuropathological findings of no severe 
brain atrophy and well-preserved brain shapes 
in centenarians are surprising (Ganz et al., 2018; 
Takao et al., 2016). However, brain morphometry 
is recorded only in some brain banks’ hemispheres, 
leaving neuropathological analyses of aging 
brains to remain limited.

Atherosclerosis of the intracranial vessels, 
including the circle of Willis and the basal 
arteries, is macroscopically staged by experienced 
neuropathologists. Intracranial atherosclerosis is 
common in subjects older than 50, and it is one 
of the most important causes of stroke (Suemoto 
et al., 2018). The prevalence of intracranial stenosis 
(obstruction ≥ 50%) in the Brazil autopsy study is 
59% (387/661) (Suemoto et al., 2018). However, 
for supercentenarians, the atherosclerosis of major 
cerebral arteries might be mild, as the well-preserved 
arteries might be an essential element associated 
with human longevity (Takao et al., 2016).

4. Cerebrovascular pathology

Cerebral microinfarcts are typically defined 
as sharply delimited microscopic regions of 
cellular death or tissue necrosis, sometimes 
with central fluid-filled cavitation. HAAS found 
that microinfarct number was independently 
associated with poor cognition (White et al., 
2002), and in ACT, > 2 cerebral microinfarcts 
were statistically significant as correlates of 
dementia status (Sonnen et al., 2007). These 
results suggested that microinfarct burden may 
have a role in dementing illness.

Age-related brain microvascular pathologies are 
widespread in population-based autopsies. A 
previous study reported that moderate-to-severe 
arteriolosclerosis was noted in about 36% of 
subjects and was associated with microinfarct 
burden (Arvanitakis et al., 2017). With aging, 
arteriolosclerosis was not very severe in 
centenarians (Takao et al., 2016). “Cerebral age-
related TDP-43 pathology and arteriolosclerosis” 
(CARTS) was proposed in a recent study as 
brain arteriolosclerosis together with TDP-43 
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deposition in the amygdala and limbic system, as 
well as hippocampal sclerosis (Nelson et al., 2016). 
Moreover, large amounts of arterioles become 
tortuous after age 50, with an intrinsic vulnerability 
of the white matter (Brown & Thore, 2011; Hassler, 
1967). Apart from arteriopathy, in 1995, Moody 
et al. identified a new type of cerebral vascular 
pathology in subjects with white matter lesions, 
periventricular venous collagenosis. In our findings, 
moderate-to-severe venular collagenosis was also 
commonly observed in the white matter regions and 
was significantly correlated with age (unpublished 
data). The reason the veins become thickened in the 
deep white matter is not apparent, while a potential 
mechanism was proposed as the mechanical 
damage to small vessels due to abnormally high 
pulsatile motion in the periventricular white case 
(Henry-Feugeas, 2008). Capillaries, another main 
component of microvasculature, decrease in aging 
(average 16%) and lose their endothelium as string 
vessels (Bell & Ball, 1981; Brown & Thore, 2011). 
In this context, string vessels increase in aged brains, 
while the density in white matter lesions decreases 
and disappears (Brown & Thore, 2011). Overall, the 
pathogenesis seems to be a putative vicious cycle of 
cerebrovascular angiogenesis decline and hypoxia-
induced capillary loss.

In population-based samples, the prevalence of 
cerebral amyloid angiopathy (CAA) is higher in 
the demented than the non-demented. On average, 
55–59% of those with clinical dementia have CAA 
compared to 28–38% of the non-demented (Keage 
et al., 2009). One of the critical issues is that the 
optimized staining methods to examine CAA has 
not been well-recognized, including Congo red, 
thioflavin-S, anti-Aβ immunohistochemistry, and 
Weigert’s haematoxylin conducted in previous 
pathological studies. Another limitation is that 
no consensus has been reached on how to sample 
or grade CAA severity. The current approach 
isolates cerebral and leptomeningeal vessels from 
the brain and staining for amyloid with Thioflavin 
(Roher et al., 2003; Weller et al., 1998). Given that 
the distribution is variable, a standard recognized 
method for assessing CAA is required for future 
population-based multi-center studies.

5. Alzheimer’s disease neuropathological 
changes

Dementia affects about 55 million people 
worldwide, for which AD is the most common 

single cause and is paid much attention in 
community-based cohort studies. The CC75C 
research reported in 1998 that the average annual 
incidence rate of AD was 2.7 (1.6-4.4) in people 
aged over 75 years, with a marked increase with 
age (aged 75-79 years, 1.1; aged 80-84 years, 
2.5; aged 85 years and older, 6.2) (“Incidence 
of dementia and cognitive decline in over-75s in 
Cambridge overview of the cohort study,” 1998).

Alzheimer’s disease neuropathological changes 
(ADNC) are defined by the 2012 NIA guidelines as 
including amyloid β (Aβ) plaques, neurofibrillary 
tangles (NFTs), and neuritic plaques and are 
assessed by a three-tiered staging system which 
quantifies the severity of ADNC as “not”, “low”, 
“intermediate” and “high” based on individual 
classification of these three pathological hallmarks 
(Hyman et al., 2012; Montine et al., 2012). 
Namely, this ADNC staging system includes 
ABC scores, combining assessment for amyloid 
plaques (A score), NFTs (Braak stages, B score), 
and neuritic plaques (CERAD scores, C score). 
Higher ADNC scores are strongly associated with 
cognitive decline and dementia, and a score of 
“high” or “intermediate” is considered a sufficient 
explanation for clinical cognitive impairment 
(Hyman et al., 2012). ADNC is commonly assessed 
in autopsy cohorts and brain banks.

ADNC correlates well with clinical symptoms of 
dementia in population-based autopsy cohorts. 
Findings from autopsy cases from the ROS MAP 
study (mean age at death: 88.5 years) showed that 
about 90% of patients with clinical AD met the 
pathological criteria for AD, and about 50% of 
patients with mild cognitive impairment met the 
pathological criteria, while 1/3 of people without 
clinical symptoms met the criteria (“Overview and 
Findings from the Religious Orders Study,” 2012; 
“Overview and Findings from the Rush Memory 
and Aging Project,” 2013). Combined analysis of 
the Nun and ACT studies found that 50%/51% of 
participants with dementia showed Braak stage 
V/VI, while 8%/12% of participants without 
dementia were assessed as Braak stage V/VI 
(Santa Cruz et al., 2011). Higher Braak stage was 
strongly associated with cognitive decline, memory 
impairment, and decreased hippocampal volume in 
the Nun study (“The Nun Study_ risk factors for 
pathology and clinical-pathologic correlations,” 
2012; Riley et al., 2002). The CC75C and CFAS 
studies confirmed the association between 
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dementia and type- and position-specific ADNC, 
with the odds ratio of neuritic plaques and NFTs 
for dementia far exceeding that of diffuse plaques, 
especially in the neocortex (Brayne et al., 2009; 
“Pathological correlates of late-onset dementia 
in a multicentre, community-based population in 
England and Wales,” 2001).

While studies confirmed the association between 
ADNC and cognitive decline, this association also 
appears to weaken with age, and many cases with 
substantial AD neuropathology at autopsy exhibit 
few, if any, clinical symptoms of dementia during 
their lifetime, a phenomenon termed resilience to 
AD (Arenaza-Urquijo & Vemuri, 2018). Among 
centenarians aged 98 years or older, 45% of non-
demented individuals had intermediate or high AD 
pathology, and the distributions of neuropathology 
(except for NFTs) were similar among individuals 
with different cognitive states (Tanprasertsuk 
et al., 2019). The CFAS study assessed 456 brains 
(age at death: 69-103 years) and found that the 
associations between ADNC (neuritic plaques and 
NFTs) and dementia were strong at 75 years of age 
but much reduced at 95 years of age when ADNC 
showed considerable overlap between people with 
and without dementia (“Age, neuropathology, 
and dementia,” 2009). When Braak and CERAD 
criteria were examined separately in a sample of 
209 brains (mean age at death: 86 years), neither 
performed well enough to predict dementia status 
(“Pathological correlates of late-onset dementia 
in a multicentre, community-based population in 
England and Wales,” 2001). Lower neocortical 
pTau burden and lower TDP-43 encephalopathy 
neuropathologic change may assist in the 
resilience to clinical AD in those with sufficient 
ADNC burden (Latimer et al., 2019).

6. Other neuropathological markers

6.1 Lewy bodies

Lewy bodies are lamellated, eosinophilic 
hyaline, intracytoplasmic neuronal inclusions 
of densely packed fibrillated aggregates that 
include α-synuclein and ubiquitin (Spillantini 
et al., 1997). Lewy bodies (LBs) within neurons 
and Lewy neurites in neuronal processes are the 
microscopic pathological hallmarks of Lewy 
body diseases (LBD), which include Parkinson’s 
disease (PD), Parkinson’s disease with dementia 
(PDD), dementia with Lewy bodies (DLB), and 

other less common neurodegenerative disorders 
(Jellinger, 2003; Outeiro et al., 2019). However, 
pathological findings of LBs in routine postmortem 
examination are much more common than the 
incidence of clinical PD, PDD, and DLB (Foltynie 
et al., 2006). When LBs were found in the brains 
of normal individuals, it was often referred to as 
incidental LBD (Ben-Shlomo & Wenning, 1994).

Using alpha-synuclein immunohistochemistry, 
LBs occur in 8-36% of elder subjects in community-
based populations (Bennett et al., 2006; Brenowitz 
et al., 2017; Buchman et al., 2018; Ganz et al., 
2018; Knopman et al., 2003; Markesbery et al., 
2009; Mikolaenko et al., 2005; Oinas et al., 2009; 
Schneider et al., 2009; Schneider et al., 2012; 
Wakisaka et al., 2003; Wennberg et al., 2019). One 
of these studies showed an age-related increase 
in Lewy pathology (Wakisaka et al., 2003). Still, 
other studies have found no significant difference 
in the mean age of those with and without Lewy 
pathology. The most common affected regions are 
the cerebrum and brainstem. Still, studies have 
also reported Lewy pathology of the spinal cord, 
dorsal root ganglia, and peripheral autonomic 
nervous system in neurologically healthy elderly 
subjects (Bloch et al., 2006; Buchman et al., 2018; 
Klos et al., 2006; Sumikura et al., 2015). Studies 
including a higher proportion of AD cases found 
that Lewy pathology frequently coexists with 
ADNC (Brenowitz et al., 2017; Jellinger, 2004; 
Mikolaenko et al., 2005; Parkkinen et al., 2003). 
The results from clinical studies only assessing 
participants with AD have been inconsistent 
(Chung et al., 2015; Hamilton, 2000; Stern 
et al., 2001). In a study of the mixed clinic and 
community-based samples, a high proportion 
(over 50%) of participants with ADNC had co-
occurring LBs. It provided evidence for a positive 
association between ADNC and Lewy pathology 
in either clinic or community-based samples 
(Brenowitz et al., 2017). The discrepancies 
regarding Lewy pathology and AD pathology 
might come from the heterogeneity of the studied 
populations and neuropathological assessment 
methods.

6.2 TDP-43 proteinopathy

Transactive response DNA-binding protein of 
43 kDa (TDP-43) is an RNA and DNA binding 
protein responsible for transcriptional repression, 
RNA metabolism, and RNA splicing during the 
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stress response (Buratti & Baralle, 2012). TDP-43  
pathology was first considered as a disease 
protein in amyotrophic lateral sclerosis and 
frontotemporal lobar degeneration with ubiquitin-
positive inclusions (Neumann et al., 2006; Xu 
et al., 2010), but to date, it has been reported as 
a common co-pathology in many age-related 
neurodegenerative disorders, including AD, PD, 
Huntington’s disease, corticobasal degeneration 
(CBD), progressive supranuclear palsy (PSP), 
and Guam Parkinson dementia complex, etc. 
(Amador-Ortiz et al., 2007; Koga et al., 2018; 
Liao et al., 2022; J. L. Robinson et al., 2018; 
Schwab et al., 2008; Wilson et al., 2011; Yokota 
et al., 2010). The prevalence of TDP-43 pathology 
has been reported as ranging from 25–50% in 
AD (Nakashima-Yasuda et al., 2007; Uryu et al., 
2008; Wilson et al., 2011).

TDP-43 proteinopathy can also be observed 
in normal elderly. Several community-based 
cohorts studies indicate that TDP-43 pathology 
is common in neurologically normal elderly (the 
frequency ranging between 10.5% and 46.4%) 
(Arnold et al., 2013; Ganz et al., 2018; Keage 
et al., 2014; Nag et al., 2017; Nascimento et al., 
2016; Nelson et al., 2019; A. C. Robinson et al., 
2018; Uchino et al., 2015; Wennberg et al., 2019; 
Wilson et al., 2013), and the frequency of TDP-43 
increased with age (Keage et al., 2014; Nag et al., 
2017; Nascimento et al., 2016; Wennberg et al., 
2019). One multiethnic study even suggested a 
higher prevalence of TDP-43 pathology in Asians 
than Caucasians (Nascimento et al., 2016), but 
evidence from more studies is lacking. As for other 
commonly concomitant neurological pathologies 
in normal elderly, those with TDP-43 were reported 
to have a higher prevalence of hippocampal 
sclerosis (Cykowski et al., 2016; Ganz et al., 2018; 
Nag et al., 2017; Nelson et al., 2019; Wilson et al., 
2013) and argyrophilic grains (AGs) (Arnold et al., 
2013), but no robust associations were found for 
neuropathological variables like LBs, NFTs or Aβ, 
etc. These studies failed to identify a definite link 
between TDP-43 pathology and dementia, though 
a trend was observed in different studies (Keage 
et al., 2014; Nag et al., 2017; A. C. Robinson et al., 
2018; Wilson et al., 2013).

6.3 Argyrophilic grains

AGs are Gallyas-positive, spindle- or comma-
shaped, four-repeat (4R) tau protein-positive 

lesions which are selectively accumulated in 
neuronal dendrites and axons, serving as the 
pathological hallmarks of argyrophilic grain 
disease (AGD) (Togo et al., 2002). AGD often 
coexists with other neurodegenerative diseases, 
including PSP (Ikeda et al., 2016; Kovacs et al., 
2016; Masliah et al., 1991; Santpere & Ferrer, 
2009), CBD (Tatsumi et al., 2014), AD (Braak 
& Braak, 1987; Mattila et al., 2002; Thal et al., 
2005), PD (Grau-Rivera et al., 2013; Homma 
et al., 2015), and TDP-43 (Fujishiro et al., 2009), 
etc. It has been reported that in PSP cases, the 
frequency of AGs ranges from 18.8% to 80%, and 
CBD cases range from 41.2% to 100% (Yokota 
et al., 2018). In general, in a population ranging 
in age from 25 to 96 years, the frequency of 
AGs tended to be much lower (125/2661, 5%) 
than that in PSP or CBD cases and showed a 
significant increase with age (Braak & Braak, 
1998). Another study, including 300 consecutive 
autopsies of subjects over age 30, found 17/300 
or 5.6% of those cases showed AGs (Martinez-
Lage & Munoz, 1997). The prevalence of AGs in 
centenarians reached 31.3% (Ding et al., 2006). 
Four population-based studies have confirmed 
that AGs are present at a frequency of 15–31% 
in neurologically normal elderly (Josephs et al., 
2008; Knopman et al., 2003; Rodriguez et al., 
2016; Sabbagh et al., 2009). AGs are primary age-
associated tauopathies. Thus, it is understandable 
that in both clinical and community-based studies, 
AGs were never observed in persons younger 
than their mid-fifties and the prevalence increased 
with age (Ding et al., 2006; Saito et al., 2002; 
Saito et al., 2004). To date, age has been the 
sole risk factor for AGs. None of these studies 
has confirmed any distinctive health features 
associated with AG cases. Although two studies 
have reported a cognitive decline in AGD cases 
(Braak & Braak, 1998; Tolnay et al., 1997), AGs 
can occur without significant cognitive decline or 
even show protection against cognitive decline 
(Grinberg et al., 2013; Sabbagh et al., 2009). Prior 
studies suggested that AGs might be benign.

7. Conclusion

Given the irreplaceable advantages of population-
based clinical-pathological studies in investigating 
age-related disease, here we review 7 such studies 
to describe their findings of neuropathological 
changes. Decreases in brain weight and volume, 
atherosclerosis, arteriolosclerosis, venular 
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collagenosis, capillary loss, and amyloid 
deposits in brain tissue and vascular walls, and 
characterized neuropathological changes of 
AD, PD, and other neurodegenerative disorders 
generally become prevalent with increased age 
at autopsy. However, most neuropathological 
changes are less prominent in centenarians due to 
selection bias by death. Aging is the fundamental 
risk factor for most neurodegenerative diseases, 
and typically, most pathological hallmarks of 
neurodegenerative disorders, including ADNC, 
LBs, TDP-43, and AGs, also manifest in the 
elderly. Proteinopathy is also commonly observed 
in the brains of aged individuals without severe 
cognitive deficits or motor dysfunction. Thus, 
abnormal protein deposits have been considered 
essential hallmarks in normal brain aging and 
neurodegeneration.

Population-based autopsy studies have unique 
advantages in the characterization of brain aging, 
and are necessary for exploring mechanisms and 
therapeutic targets of late-life neurodegeneration 
with less bias. However, they would be hindered 
by the difficulties in obtaining large amounts 
of donation resources. Thus, the integration 
of autopsied resources should be driven. 
Another crucial point for further research lies 
in whether the proteinopathy found in healthy 
individuals represents the preclinical phase of 
neurodegenerative disease or could be part of 
normal aging. In other words, whether normal 
aging and neurodegeneration are two quite distinct 
processes or co-development and where aging 
stops and pathological neurodegeneration begins, 
remainchallenging problems for future research.
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