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Preclinical Experimental Models for Human Glioma

Diya Zhanga,*, Yunfan Lia,*, Yucheng Wanga, Rui Jub, Lei Guoc

Abstract: Gliomas are one of the most common incurable brain 
tumors in adults with poor prognosis. Attempts at modeling hu-
man gliomas over the past decades have not only improved our 
knowledge of glioma biology but also boosted the development of 
therapeutic strategies. Despite great endeavors, gliomas are 
not responsive to the current tumor treatments, such as ra-
diotherapy, chemotherapy, and immunotherapy due to their high 
inter- and intra-heterogenic tumor microenvironment (TME) and 
immune suppressive landscape. Therefore, it is significant to 
utilize suitable models to investigate the tumorigenesis, pro-
gression, and invasion of gliomas and evaluate potential thera-
pies. Ideally, glioma models should fully recapitulate the genetic 
alterations and histological characteristics of the parental tu-
mor, as well as reproduce the interactions between the tumor 
and its TME. In this review, we will discuss and compare the 
pros and cons of the current glioma models including traditional 
mouse models, established cell lines, newly 3D-cultured organ-
oids, and 3D bioprinting glioma models in glioma pathogenesis 
research and therapy evaluation. 
Keywords: Glioma; Glioblastoma; Experimental Models.

1. INTRODUCTION

Gliomas are the most malignant primary brain tumors that originate 
from neuroglial stem or progenitor cells (Weller et al., 2015). Based 
on their histological appearances and molecular features, gliomas 
are diagnosed and categorized into different groups, which main-
ly comprise astrocytomas-with glioblastoma (GBM) being one of 
them-, oligodendrogliomas, and ependymomas. Depending on their 
degree of malignancy, gliomas are also classified as low-grade gli-
omas (LGGs, WHO grade I or II) and high-grade gliomas (HGGs, 
WHO grade III or IV) (Boccellato & Rehm, 2022; Chen et al., 2017; 
Louis et al., 2021). The WHO grade IV form of gliomas, known as 
GBM, has a very dismal five-year survival rate of just 6.8% (Ostrom 
et al., 2021). 

Gliomas, especially GBMs, exhibit high heterogeneity in both 
molecular and histological aspects. On the aspect of molecular level, 
a key genetic mutation is on isocitrate dehydrogenase (IDH), which 
frequently occurs in LGGs and secondary GBM (Cohen et al., 2013). 
Other (epi)genetic mutations include the dysfunction of tumor sup-
pressor genes (CDKN2A, TP53, PTEN, NF1, and RB1) and the ampli-
fication of oncogenes (EGFR, PI3K, CDK4, and PDGFRA) (Parsons 
et al., 2008; Verhaak et al., 2010). Hallmarks in histological aspects 
mainly involve proliferative microvasculature and pseudopalisad-
ing necrosis (Markwell et al., 2022). In addition, studies focused on 
the TME have demonstrated that gliomas, particularly HGGs, are 
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immunologically “cold”. The microenvironment 
of GBM is notably populated by glioma-associated 
macrophages which display an immunosuppressive 
phenotype and induce the dysfunction of lympho-
cytes, promoting tumor progression and invasion 
(Chen & Hambardzumyan, 2018; Ma et al., 2018; 
Wei et al., 2020).

Given the complex heterogeneity and molecu-
lar alterations found in human gliomas, a proper 
preclinical model will be critical for the in-depth 
study of glioma biology and validations for poten-
tial drug targets. An ideal model should completely 
recapitulate the characteristics of the parental tu-
mor and show resemblant therapeutic responses of 
human gliomas. In this review, we will discuss and 
summarize current experimental models for glio-
ma research from traditionally used cell lines and 
mouse models to the newly in vitro 3D-cultured 
models. 

2. ESTABLISHED CELL LINES 
AND CELL LINE-DERIVED 
XENOGRAFTS/ALLOGRAFTS

Cancer cell lines, generally generated from human 
or animals, carry specific genetic and morpholog-
ic characteristics of certain tumors, making them 
popular tools in cancer research. Conducting exper-
iments on in vitro cultures is usually the first pre-
clinical phase before clinical trials with a greater 
probability of success. In terms of gliomas, most of 
the cell lines are derived from human specimens of 
GBM or chemically induced murine anaplastic as-
trocytomas. Only a few lines from oligodendrogli-
omas and ependymomas have been reported since 
they are difficult to generate and maintain. Both 
human and murine cell lines possess certain promi-
nent features of human glioma, either genetically or 
histologically (Table 1).

However, traditional 2D-cultured cell lines 
are too simple to reflect the heterogeneity of hu-
man gliomas and lack interactions with immune 
cells. By implanting commercial cell lines intra-
cranially into mice has proven an excellent in vivo 
glioma model. Cell line-derived glioma mouse 
models can be classified as either xenografts or 
allografts. The former refers to the implantation 
of human cells like U87, U251, and HOG into im-
munocompromised mice which generally involve 
immunodeficient mouse strains such as nude mice, 
severe combined immunodeficient (SCID) mice, 
non-obese diabetic (NOD)/SCID mice, and NOD/

SCID/interleukin IL-2 receptor γ null (NSG) mice 
(Jin et al., 2021). The latter indicates the implanta-
tion of murine cells into their syngeneic mice i.e., 
SMA-560 in VM/DK mice, GL-261 and CT-2A 
in C57BL/6J mice, which are immunocompetent 
(Letchuman et al., 2022).

The advantages of cell line-derived models in-
clude low cost, high predictability, fast through-
put, and reliable progression of tumors (Jin et 
al., 2021; Kijima & Kanemura, 2017). Due to 
the commercially available stable cell lines and 
highly reproducible implantation methods, a large 
number of experimental models can be generat-
ed in the short term (Hicks et al., 2021; Zalles & 
Towner, 2021). Moreover, these transplant mouse 
models can preserve glioma-associated genetic 
profiles and largely recapitulate the microenvi-
ronment and histopathology of primary tumors, 
benefiting studies of glioma biology and potential 
treatments. However, xenografts lack a competent 
immune system, and the immune systems and 
TME of mouse allografts differ from their human 
counterparts in many ways. More significantly, 
after being cultured in serum-containing media 
for a long time, cell lines may have undergone 
clonal selection and accumulated genetic and phe-
notypic variations, making it difficult to recreate 
the heterogeneity and intricate genetic and phe-
notypic characteristics of human gliomas in xe-
nografts/allografts (Daniel et al., 2009; Huszthy 
et al., 2012). 

2.1. Human cell lines 
and cell line-derived xenografts

Human GBM cell lines including U251, U87, 
LN229, LN18, and T98G, among which U87 and 
U251 have been broadly used in preclinical re-
search since generated from patients with GBM in 
the 1960s. There are only a few commercial LGG 
cell lines, with the HOG cell line being commonly 
used, which was established from a human oligo-
dendroglioma specimen (Tang et al., 2023). These 
adherent cells are frequently used in various as-
pects of tumor progression and specific signaling 
pathways such as metabolic reprogramming, angio-
genesis, apoptosis, and autophagy signaling, as well 
as potential treatments targeting these pathways 
(Kleihues, 2010). However, these cell lines usual-
ly undergo extended culture and hundreds of times 
passages and hence their original genetic profile 
may have changed. 
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Cell line Origin Characteristics Advantages Disadvantages

U87 Human 
astrocytoma

• Well-established and 
widely used

• Methylated MGMT 
and mutated hTERT, 
ATRX and PTEN  

• Capable of forming 
GSCs in vitro

• Genetically akin to 
human GBM

• Can be used in 
pre-clinical research 
on GSCs and anti-an-
giogenesis therapies

• Issues of authenticity
• Different histology 

with human GBM
• Sensitive to TMZ and 

radiotherapy

U251 Human 
astrocytoma

• Well-established and 
widely used

• Methylated MGMT 
and mutated PTEN, 
hTERT and p53

• Capable of forming 
GSCs in vitro

• Recapitulating 
human astrocytoma 
histology

• Genetically akin to 
human GBM

• Can be used in 
pre-clinical research 
on GSCs

• Phenotypic changes 
caused by long-term 
culture

• Different invasive 
patterns with human 
GBM

• Sensitive to TMZ and 
radiotherapy

HOG Human 
oligodendroglioma

• Modestly used
• Expressing CNPase 

and the 15-kDa form 
of MBP

• Limited glutamine 
requirement

• A useful LGG model
• Can be used in 

pre-clinical research 
on oligodendroglioma

• Lacking GSC 
characteristics

• Limited applications 
in glioma research

GL261 Carcinogen-induced 
murine glioblastoma

• Well-established 
and widely used

• Mutated K-Ras 
and p53

• Immune-suppressive 
phenotype but with 
high expression of 
MHC I

• Capable of forming 
GSCs in vitro

• Recapitulating human 
ependymoblastoma 
histology

• Can be used in 
pre-clinical research 
on immunotherapies 
and GSCs

• Highly tumorigenic 
and immunogenic 

• Phenotypic changes 
caused by long-term 
culture

CT-2A Carcinogen-induced 
murine glioblastoma

• Modestly used
• Deficient PTEN and 

TSC2
• Expressing high levels 

of complex gangliosi-
des with low distribu-
tion of GM3

• Immune-suppressive 
phenotype

• Highly proliferative
• Capable of forming 

GSCs in vitro

• Resistant to TMZ and 
radiotherapy

• Can be used in 
pre-clinical research 
on immunotherapies 
and GSCs

• Highly tumorigenic 
and immunogenic 

• Tumor mutational 
burden not well 
characterized

• Different invasion 
patterns with human 
GBM

SMA-560 Spontaneously mu-
rine astrocytoma

• Modestly used
• Expressing high levels 

of GFAP and GS
• Secreting TGFβ with 

low MHC I and MHC II 
expression

• Capable of forming 
GSCs in vitro

• Recapitulating 
human anaplastic 
astrocytoma

• Can be used in 
pre-clinical research 
on immunotherapies 
and GSCs

• More tumorigenic and 
immunogenic than 
human GBM

• Different invasion 
patterns with human 
GBM

• Not commercially 
available and limited 
applications in GBM 
research

Table 1. Comparison of human and syngeneic cell lines.
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U87

The U87 line, established from a grade III astrocy-
toma-glioblastoma in a 44-year-old woman is the 
most ubiquitously used human GBM cell line (J. 
Ponten & Macintyre, 1968). Genetically, this cell 
line shows certain similarities to human GBM. U87 
cells have mutations in hTERT, ATRX, and PTEN, 
carry no p53 or IDH1 mutations, and have a meth-
ylated MGMT status (Haddad et al., 2021; Patil et 
al., 2015). These cells also carry mutations in genes 
controlling the cell cycle, causing deletions in 
p14ARF/p16 regulatory subunits of cyclin-dependent 
kinases (Ishii et al., 1999; Schulz et al., 2022). In 
addition, this cell line contains a fraction of stem-
like cells, possessing the ability of self-renewal and 
the formation of secondary tumor spheres (Yu et al., 
2008), which could be useful for the study of glioma 
stem cells (GSCs).

Although the U87 line is widely used in thou-
sands of publications, its authenticity is still contro-
versial. Researchers by using DNA fingerprinting 
found that the widely used U87 cell line from the 
American Type Culture Collection (ATCC) was not 
identical to the initial one (Allen et al., 2016). The 
current U87 line does have GBM features whereas 
it deviates from its origin. Besides, U87 cells are 
sensitive to radiotherapy and temozolomide (TMZ) 
treatments in cell culture, which also differ from 
human GBM (Akbarnejad et al., 2017; Ryu et al., 
2012; Wachsberger et al., 2007; Wang et al., 2014). 
Histologically, U87 orthotopic xenografts have 
been demonstrated to be very unlike human GBM, 
presenting expansile growth, lack of glial fibrillary 
acid protein (GFAP) expression (an astrocyte mark-
er), functional p53 expression, and inconsistent hy-
poxia-inducible factor 1α (HIF-1α) expression. U87 
tumors are highly vascularized but rarely necrot-
ic in their core without pseudopalisading patterns 
(Radaelli et al., 2009; Schulz et al., 2022). 

U251

The U251 line was isolated from a 75-year-old male 
patient with GBM (Jan Ponten, 1975). Genetically, 
the U251 cell line covers a broad spectrum of ge-
netic variability, including mutant PTEN, upregu-
lation of PI3K and Akt, non-functional p53, p14ARF/
p16 deletion, and a methylated MGMT status (Ishii 
et al., 1999; Schulz et al., 2022). Similar to U87, 
U251 cells also contain a subset of cells express-
ing CD133, a marker for GSCs, capable of forming 

neuro-spheres. These CD133+ cells can serve as a 
useful model for GSCs studying and drug screening 
(Qiang et al., 2009). Histologically, U251 orthotopic 
tumors resemble most of the key salient features of 
GBM, such as positive staining for vimentin and 
GFAP, expansile invasion into surrounding brain 
parenchyma, microvascular proliferation with 
hemorrhage as well as pseudopalisading necrosis 
(Candolfi et al., 2007; Jacobs et al., 2011). The pres-
ence of active caspase-3 signaling and HIF-1α ex-
pression along pseudopalisades may indicate the in-
tricate network of apoptosis, hypoxia, angiogenesis, 
pseudopalisading necrosis, and neoplastic invasion 
(Radaelli et al., 2009).

However, unlike the invasive pattern observed 
in human GBM specimens, tumor cells migrating 
into the white matter tracks were not detected in the 
U251 model (Candolfi et al., 2007). Additionally, 
U251 is known to be responsive to TMZ and radi-
ation treatments both in vivo and in vitro (Haddad 
et al., 2021). Similar to U87, long-term subclones of 
U251 accumulated genetic aberrations resulting in 
a variety of phenotypic changes compared with the 
original U251 line (Torsvik et al., 2014). 

HOG

The HOG glioma line was established from a hu-
man oligodendroglioma specimen two decades ago 
(Post & Dawson, 1992). HOG cells do not express 
astrocyte marker GFAP, but express oligodendro-
cyte markers including CNPase protein and the 15-
kDa form of myelin basic protein (MBP), a marker 
for immature oligodendrocytes (Nistér & Wester-
mark, 1994). Key applications of the HOG cell line 
are based on cell assays specifically on cellular me-
tabolism. HOG cells were found to have minimal 
levels of glutamine synthetase activity and exhibit 
limited glutamine requirements for survival and 
growth (Chiu et al., 2018). An analysis of the cel-
lular metabolome of HOG cells demonstrated that 
IDH1 and IDH2 mutants change the levels of ami-
no acids, glutathione metabolites, tricarboxylic acid 
(TCA) cycle intermediates, and choline derivatives 
(Reitman et al., 2011).

However, HOG cells are IDH wild-type and 
lack expression of GSCs-related genes like CD133, 
SOX2, nestin, and Olig2 (Long et al., 2013). This 
genetic profile may hamper the applications of HOG 
cells in the study of oligodendroglioma. Moreover, 
unlike cell lines derived from GBM, HOG cells are 
rarely used in mouse xenograft models. Huang and 
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colleagues evaluated the anti-glioma effects of Cae-
salpin A in vivo by utilizing a nude mouse model 
that subcutaneously bore HOG IDH1-mutant tu-
mors (Huang et al., 2021).

2.2. Syngeneic murine cell lines 
and cell line-derived allografts

Murine GBM cell lines such as GL261, CT-2A, 
and SMA-560 have been popularized in glioma re-
search. GL261 and CT-2A were generated from mu-
rine glioma induced by carcinogens, while SMA-
560 was spontaneously derived. As these cells are 
orthotopically implanted in a syngeneic mouse, one 
can carry out GBM tumor immunology research and 
test immunotherapeutic compounds in vivo with an 
immunocompetent system (Kijima & Kanemura, 
2017; Ren et al., 2023). Nevertheless, these murine 
models cannot model the actual human GBM mi-
croenvironment as the mouse immune system and 
TME is different from their human counterparts. A 
big disadvantage of the chemically induced murine 
cell lines is that they carry higher mutational bur-
dens than human GBM. As a result, these species 
and immunogenic discrepancies between syngeneic 
murine models and human GBM may lead to the 
inconsistency between positive preclinical results 
and negative outcomes in human clinical trials 
(Letchuman et al., 2022; Oh et al., 2014).

GL261

The GL261 tumor was first generated in the 1930s, 
from chemically induced C57BL/6J mice via in-
jecting 20-methylcholanthrene into their brains 
(Seligman et al., 1939). Through serial in vivo 
passages-transplanting tumor fragments subcuta-
neously and intracranially into C57BL/6J mice, a 
stable GL261 cell line was established in the mid-
1990s, facilitating future in vitro assays and in situ 
primary brain tumor studies in the syngeneic mice 
(Ausman et al., 1970; Szatmari et al., 2006). Genet-
ically, GL261 cells carry mutations in the K-Ras 
oncogene and p53 tumor suppressor gene, resulting 
in high expression of c-myc (Oh et al., 2014). Given 
that GL261 cells carry wild-type IDH1, the intro-
duction of the R132H mutation has been utilized 
to develop the IDH1-mutated intracranial glioma 
model, supporting translational research of immu-
nological targeting of the mutation of IDH1 in glio-
ma patients (Pellegatta et al., 2015). Histologically, 
GL261 tumors mimic human ependymoblastomas 

well. The H&E sections of GL261 tumors show that 
there are multiple necrotic areas throughout the 
tumors, with densely packed cells lining these ar-
eas in a pseudopalisading pattern (Kleihues, 2010). 
Several studies demonstrated that murine GL261 
glioma recapitulates its human counterpart in a va-
riety of ways, but most significantly in its features 
of invasiveness and angiogenesis (Ausman et al., 
1970; Zagzag et al., 2000). GL261 tumors also show 
an immune-suppressive phenotype with large num-
bers of exhausted T cells and macrophages (Khalsa 
et al., 2020). Besides, similar to human GBM cell 
lines, GL261 cells contain a population express-
ing CD133 and nestin when grown in serum-free 
media. These CD133+ GL261 cells have elevated 
tumorigenicity and a stem-like phenotype, which 
facilitates their applications in GSC research (Wu 
et al., 2008).

Although the GL261 cell line has been widely 
used in preclinical studies, its disadvantages should 
also be taken into account. Concerning immunolog-
ical features, GL261 may not accurately reflect the 
immunogenicity of human GBM. GL261 cells ex-
press high levels of major histocompatibility com-
plex MHC I, while the expressions of MHC II and 
T cell activation co-stimulatory molecules B7-1 and 
B7-2 are relatively low, indicating that GL261 cells 
are sensitive to MHC I-dependent CD8+ cytotoxic 
T cells (Szatmari et al., 2006). Moreover, unlike 
human GBM, GL261 cells bear a higher tumor mu-
tational load and numerous predicted neoepitopes 
(Johanns et al., 2016). This may render the inconsis-
tency of the immunotherapy outcomes between pre-
clinical research and clinical trials. Last, like many 
other cell lines, it is also noteworthy that the GL261 
cell line may differ between labs under a long-term 
culture.
   
CT-2A

Like GL261, CT-2A tumor was generated from 
20-methylcholanthrene intracranially injected 
C57BL/6J mice as well (Zimmerman & Arnold, 
1941). The CT-2A cell line was obtained from the 
flank-growing tumors which were maintained by 
subcutaneous transplants over many generations 
(Seyfried et al., 1992). Genetically, similar to hu-
man astrocytomas, the CT-2A cell line is p53 wild-
type with deficient PTEN and tuberous sclerosis 
complex 2 (TSC2) expression (Marsh et al., 2008). 
Remarkably, CT-2A express high levels of the struc-
turally more complex gangliosides and low levels of 
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the anti-angiogenesis monosialoganglioside GM3, 
suggesting the angiogenic features of the CT-2A tu-
mors (Abate et al., 2006; Seyfried et al., 1992; Sey-
fried & Mukherjee, 2010). Histologically, the CT-
2A experimental tumors possess features akin to 
human astrocytomas, including high mitotic index, 
elevated cellular density, angiogenesis, hemorrhage, 
and pseudopalisading necrosis. (Martínez-Murillo 
& Martínez, 2007; Mukherjee et al., 2004). Addi-
tionally, the immunogenomic landscape of CT-2A 
also shows some characteristics in accordance with 
human GBM, such as decreased αPD-L1 sensitiv-
ity, abundant infiltrating macrophages, and hypo-
functional T cells (Liu et al., 2020). Researchers 
found low enrichment of genes related to immune 
response pathways compared with GL261 tumors 
(Khalsa et al., 2020). In terms of stemness, CT-2A 
neurospheres can be formed in serum-free media. 
Of note, CT-2A cells and neurospheres are highly 
proliferative and aggressive, which may offer po-
tential utilization in the research of GSCs in an im-
munocompetent environment (Binello et al., 2012). 

While CT-2A tumors are highly proliferative, 
they exhibit a distinct border with surrounding 
brain parenchyma. This low-invasion pattern is not 
consistent with human GBM (Martínez-Murillo & 
Martínez, 2007; Shelton et al., 2010). In addition, 
due to the fact that CT-2A tumors were caused by 
carcinogens, this cell line also carries greater tum-
origenesis and immunogenesis mutational burdens 
than primary human GBM (Liu et al., 2020). Com-
pared to GL261, the CT-2A model is relatively less 
used in GBM research. Although described as ra-
dio- and chemo-resistance by a few research, more 
specific effects and mechanisms need to be eluci-
dated (Oh et al., 2014; Riva et al., 2021).

SMA-560

Unlike GL261 and CT-2A, the SMA-560 mod-
el was generated from the inbred VM/DK mouse 
strain in which astrocytomas occurred sponta-
neously (Fraser, 1971). The stable tumorigenic cell 
line was established through culturing tumors that 
were transplanted subcutaneously into syngeneic 
mice in the 1980s (Pilkington et al., 1983; Serano 
et al., 1980). Histologically, SMA-560 mirrors hu-
man anaplastic astrocytomas well, expressing high 
levels of astrocyte marker GFAP and glutamine 
synthetase (GS) and minimal levels of S-100 pro-
tein. These tumors exhibit such a solitary invasive 
pattern that nearly all the tumors are confined in the 

white matter and tend to spread along white matter 
tracts (Fraser, 1971; Serano et al., 1980). Interest-
ingly, SMA‑560 secretes the immunosuppressive 
cytokines TGF-β and exhibits low expression of 
MHC I and MHC II, indicating the indispensable 
application of SMA‑560 for studies on the impact 
of immunosuppression on GBM immunotherapies 
(Sampson et al., 1997). Furthermore, the serum-free 
media supports SMA-560 sphere formation. The in 
situ VM/DK mice that bear SMA-560 spheres show 
higher expression of the vascularization marker 
CD31 and tend to have shorter median survival 
days compared to the SMA-560 non-sphere model 
(Ahmad et al., 2014).

However, genetically, this cell line has also 
been demonstrated to be more tumorigenic and 
immunogenic, as it carries more genetic mutations 
than human GBM (Johanns et al., 2016). Recently, 
Silginer and her colleagues found that SMA-560 
expresses the hepatocyte growth factor (HGF) and 
its receptor MET both in vivo and in vitro, and syn-
ergistic suppression of tumor growth by MET inhi-
bition and irradiation was observed (Silginer et al., 
2023). Despite its potential use in investigations of 
GBM immunotherapies, the SMA-560 cell line has 
not been widely used, most likely because it is not 
commercially available (Oh et al., 2014). 

3. PATIENT-DERIVED XENOGRAFTS

Similar to cell line-derived xenografts, by implant-
ing fresh human glioma cells or tissues into immu-
nocompromised mice, patient-derived xenografts 
(PDXs) are generated. Due to the potential influ-
ence of culture conditions on human cell line phe-
notype and heterogeneity, PDXs tend to gain more 
popularity in preclinical research. Freshly isolated 
human glioma specimens in immunodeficient mice 
can recapitulate the most original salient features 
of primary tumors without any in vitro artificial 
selections (Liu et al., 2023; Vaubel et al., 2020). 
Immunocompromised mouse strains like nude 
mice, NOD/SCID mice, and NSG mice have been 
widely used to generate human glioma PDX mod-
els (Shi et al., 2022; Stringer et al., 2019; Wang et 
al., 2017). Moreover, the introduction of humanized 
mice has been reported to increase the PDX success 
rate. Humanized mice are created through genetic 
approaches or by transplanting human hematopoi-
etic stem cells into severely immunodeficient mice 
(Bosenberg et al, 2023). These mice can somewhat 
imitate the human immune system but fall short of 
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a fully developed and functional human immune 
system (Okada et al., 2019). 

Since PDX models preserve the (epi)genetic 
characteristics and heterogeneity of the primary tu-
mor in glioma patients, they provide the most per-
tinent in vivo cancer model for precision therapy. 
More significantly, the establishment of humanized 
PDXs made it possible to simulate the interactions 
between gliomas and human immune systems. 
Nevertheless, there are multiple shortcomings that 
need to be considered. Unlike xenografts from cell 
lines, PDXs are costly, time-consuming, and tech-
nically challenging, with the success rate varying 
from 10% to 90% (Jung et al., 2018; Yoshida, 2020). 
Another obvious limitation of PDXs is the utiliza-
tion of immune-deficient mice and non-fully-de-
veloped humanized mice, which means that PDXs 
cannot model the accurate immunological TME of 
glioma in patients. Besides, PDX models may expe-
rience mouse-specific tumor evolution and exhibit 
different genetic and histological characteristics 
with tumors acquired from patients (Ben-David et 
al., 2017). For example, a study found that glioma 
orthotopic PDXs show absent PDGFRA amplifi-
cation and lack proliferative microvasculature and 
necrosis (Vaubel et al., 2020).

4. GENETICALLY ENGINEERED 
MOUSE MODELS (GEMMs)

Although allografts and xenografts are commonly 
used, the tumorigenesis in these models by implant-
ing large numbers of cells or pieces of fresh tumor 
tissue into mice does not resemble the pathogene-
sis of human gliomas, which is assumed to initiate 
through the variation of a single cell (Stylli et al., 
2015). Therefore, a new approach known as GEMMs 
has emerged. By manipulating the genome of mice, 
researchers are able to engineer a strain of mice that 
spontaneously develops glioma. The major strategy 
to generate GEMMs of cancers is to introduce specif-
ic gene alterations that activate oncogenes or inacti-
vate tumor-suppressor genes in germline or somatic 
cells (Jin et al., 2021). Advanced genetic engineering 
technologies like the Cre-LoxP system, RCAS-TVA 
system, CRISPR-Cas9 editing, and transposon- or 
viral-based integration have facilitated the precise 
manipulation of mutations discovered in human 
gliomas and genes of interest (Noorani, 2019). For 
instance, co-expressing oncogene H-Ras and AKT 
and loss of p53 through Cre-LoxP-controlled lenti-
viral vectors in a small number of GFAP+ cells have 

been shown to induce human high-grade gliomas 
in adult immunocompetent mice (Marumoto et al., 
2009). Additionally, researchers have successfully 
developed the mutant IDH1-driven astrocytomas 
cooperated with clinically relevant gliomagenesis 
mutations and revealed that the de novo pyrimidine 
synthesis pathway is a potential therapeutic target 
in IDH1 mutant gliomas (Philip et al., 2018; Shi et 
al., 2022). 

As the de novo tumor is achieved by specific 
genetic manipulations, GEMMs are powerful tools 
to investigate the genetic drivers for gliomagenesis 
and the underlying molecular mechanisms (Kersten 
et al., 2017). Comparatively, unlike orthotopically 
transplant models, transgenic mice can prevent 
potential damage to the blood-brain barrier (BBB) 
(Haddad et al., 2021). Hence, GEMMs are suitable 
models for studying the microenvironment of glio-
mas and drug distribution as they have competent 
immune systems and intact BBB (Hetze et al., 2021; 
Lentin et al., 2017). Despite the advantages of mo-
lecular investigations, GEMMs suffer from massive 
costs, long experimental periods, complex breeding 
schemes, and variable tumorigenesis rates (McNeill 
et al., 2015). Moreover, GEMMs cannot model in-
tratumoral heterogeneity, and transgenic mice may 
result in tumors characterized by mixed histolog-
ical grades so that they fail to reflect key features 
seen in human gliomas (Huszthy et al., 2012). It is 
also noteworthy that the genetic alterations may 
disrupt important signaling pathways and induce 
severe developmental defects before a desired tu-
mor phenotype emerges (Rankin et al., 2012).

5. ORGANOIDS

Although mouse models can simulate interactions 
between multiple cells, organs, and microenviron-
ments, the absence of human targets may result 
in variations in drug effectiveness due to species 
differences. Additionally, the rodent brain cannot 
accurately replicate the GBM microenvironment 
found in humans (Klein et al., 2020; Xu et al., 2023). 
Consequently, scientists have redirected their focus 
towards organoids, the three-dimensional models 
that are self-assembled by tissue or induced plu-
ripotent stem cells (iPSCs) in response to specific 
growth factors. These structures exhibit certain 
structural and functional similarities to the origi-
nal organs and can be consistently expanded within 
an in vitro 3D-cultured system to mimic the devel-
opmental and functional characteristics of human 
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organs (Clevers, 2016). Generally, there are three 
commonly employed methods for constructing 
GBOs: (1) Organoid construction using iPSCs; (2) 
Organoid generation utilizing GBM cells derived 
from patient tumor tissues; (3) Organoids generated 
through co-culturing gene-edited brain organoids 
or brain organoids with GBM.

In 2016, Hubert et al. utilized patient-derived 
GBM cells to generate glioblastoma organoids 
(GBOs) in Matrigel, which successfully replicated 
the stem cell heterogeneity and hypoxic gradient 
observed in human tumors. These organoids also 
maintained the tumorigenic and diffuse invasive 
phenotypes of primary tumors and were employed 
to investigate their interaction with GSCs in prolif-
erative and hypoxic regions (Hubert et al., 2016). 
Through long stable passages, these patient-derived 
GBOs still preserve the heterogeneity, gene expres-
sion, and mutational spectrum of parental tumor 
cells, allowing for the utilization to investigate the 
mechanisms underlying patient-specific responses 
to immunotherapy (Jacob, Ming et al., 2020; Jacob, 
Salinas et al., 2020). Ogawa et al. employed a com-
bination of organoid technology and CRISPR/Cas9 
technology to target oncogenes/tumor suppressors 
in brain organoids and observed tumor development 
in GBOs with pronounced aggressiveness (Ogawa 
et al., 2018). Additionally, by co-culturing human 
embryonic stem cell-derived brain organoids with 
patient-derived GSCs, Linkous et al. established 
a “GLICO” model, which enables the investiga-
tion of structural and biological characteristics of 
patient-derived GBM within an in vitro brain-like 
microenvironment and can be readily scaled up for 
high-throughput drug screening (Linkous et al., 
2019). GBOs overcome certain limitations of tradi-
tional glioma models and exhibit comparable tissue 
structure and functional characteristics to prima-
ry tumors. They effectively recapitulate the high 
heterogeneity, aggressiveness, and drug resistance 
exhibited by parental tumors. Furthermore, these 
GBOs can be generated within a short timeframe 
while allowing for long-term passage and cryo-
preservation. Their ease of expansion makes them 
highly suitable for medium- to high-throughput 
drug screening, facilitating biobank establishment 
and enabling rapid identification of optimal drug 
combinations tailored to individual patients’ needs. 
Therefore, GBO represents an advantageous model 
for evaluating therapeutic drugs targeting GBM (Ja-
cob, Salinas, et al., 2020; Rajan et al., 2023; Ratliff 
et al., 2022; Xu et al., 2023; Zhang et al., 2020). 

Despite their widespread use in GBM research, 
there are still certain limitations, such as high-cost 
requirements for sampling immediately after tissue 
resection and the lack of vascular systems or tran-
sient immune components, which may hinder vali-
dation studies on immunotherapeutic effects (Jacob, 
Salinas, et al., 2020; Linkous et al., 2019; Ogawa et 
al., 2018; Zhang et al., 2020).

6. 3D BIOPRINTING GLIOMA MODELS

The application of advanced 3D bioprinting tech-
nology enables the rapid generation of diverse spa-
tially organized cultures comprising various cell 
types and substrates like biological tissues, organ-
oids, and tumor models. This cutting-edge technol-
ogy holds immense potential in disease modeling, 
drug research, and cancer research (Heinrich, Liu, 
et al., 2019; Matai et al., 2020; Tang et al., 2021; 
Wu et al., 2023). Notably, cancer research stands to 
benefit significantly from bioprinting techniques as 
they allow for the reproduction of TME, a crucial 
determinant in tumorigenesis, progression dynam-
ics, and metastatic dissemination (Bejarano et al., 
2021; Shukla et al., 2022; Wu et al., 2023). 

The initial utilization of 3D bioprinting tech-
nology in GBM research was printing GAF hydro-
gel scaffolds containing GSCs using a bio-printer 
to investigate key mechanisms underlying glio-
magenesis and drug resistance (Dai et al., 2016).  
GSCs represent an exclusive subset of cells 
within GBM that possess remarkable self-renewal 
capacity along with differentiation potential and 
are intricately associated with gliomagenesis, in-
vasion, malignancy, and heterogeneity. Compared 
to traditional in vitro cell cultures, the bioprinting 
GSC model exhibits prolonged viability while also 
closely mimicking physiological conditions by dis-
playing heightened expression levels of genes im-
plicated in angiogenesis (Dai et al., 2016; Suva & 
Tirosh, 2020). Consequently, this unique model of-
fers unprecedented opportunities for investigations 
into gliomagenesis, drug resistance, and the in-
volvement of GSCs during GBM angiogenesis (Dai 
et al., 2016; Ruiz-Garcia et al., 2020; Wang et al., 
2019; Wang et al., 2018; Wang et al., 2021). In ad-
dition, the combination of a 3D bioprinting system 
and light crosslinking technology allows for the se-
lection of bioinks with diverse components to make 
co-culture GBM models. This approach not only 
recapitulates the microenvironment of GBM, its in-
vasion of brain parenchyma, and recruitment and 
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polarization of glioma-associated macrophages but 
also exhibits characteristics of hypoxia response. 
It can be utilized to investigate the interaction of 
GBM with microenvironment and macrophages in 
a biomimetic 3D environment, as well as the hypox-
ia signal of GBM in a physiological environment 
(Heinrich, Bansal, et al., 2019; Neufeld et al., 2021; 
Tang et al., 2020). Additionally, the multilineage 
model constructed with the multi-nozzle extrusion 
bioprinter and bioprinted human-GBM-on-a-chip 
maintained the primary tumor structure and glioma 
cells show robust metabolic activity and prolifera-
tion ability. By maintaining the microenvironment 
and hypoxia gradient of glioma, these models serve 
as valuable tools for investigating glioma TME, 
conducting preclinical drug sensitivity tests, and 
screening effective drug combinations (Hermida et 
al., 2020; Yi et al., 2019). 

However, it is significant to note that the cur-
rent limitations of 3D bioprinting technology, such 
as high costs associated with specific bioprinters 
and biocompatible bio-inks, challenges in scaling 

production capacity, and difficulties in constructing 
complex tissue models (Heinrich, Liu, et al., 2019; 
Murphy et al., 2020; Wu et al., 2023). Nevertheless, 
with the innovation of technology and the develop-
ment of new materials, the field of 3D bioprinting is 
expected to make significant progress.

7. DISCUSSION

Reliable preclinical models are crucial to investi-
gating the mechanisms and signaling pathways of 
glioma initiation, invasion, and drug resistance. 
Consequently, they should faithfully recapitulate 
diverse characteristics of gliomas, including tu-
mor behaviors, mutational spectrum, microenvi-
ronmental heterogeneity, and cell-cell interactions. 
Current preclinical experimental models for human 
glioma can be classified into: in vitro models such 
as glioma cell lines, organoids, and 3D bioprinting 
glioma models, and in vivo models including cell 
line-derived mouse xenografts/allografts, PDXs, 
and GEMMs (Fig. 1). 

Figure 1. Current preclinical experimental models for human glioma.

Cell lines are cost-effective and sustain-
able models for investigating specific signaling 
pathways that contribute to glioma progression. 
Whereas they lack interactions with the TME 

and present challenges in maintaining the genetic 
background of primary cells during passages (Van 
Meir et al., 2010; Xu et al., 2023). By contrast, the 
two novel in vitro 3D-cultured models, organoids 
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and 3D bioprinting glioma models, comprehen-
sively recapitulate the complex TME within GBM, 
and afford the ability to retain the heterogeneity, 
gene expression, and mutational spectrum of pa-
rental glioma. Despite the expensive cost and high 
requirements for apparatus, these technologies are 
still valuable instruments for investigating the 
mechanisms underlying patient-specific responses 
to immunotherapy and highly effective tools for 
conducting high-throughput drug screening (Ja-
cob, Ming et al., 2020; Jacob, Salinas, et al., 2020; 
Linkous et al., 2019; Ruiz-Garcia et al., 2020; 
Wang et al., 2019; Wang et al., 2018; Wang et al., 
2021). As the most popular in vivo glioma model, 
mouse models can provide valuable insights into 
glioma biology and certain molecular mechanisms 
that contribute to tumor progression. Cell line-de-
rived mouse models are widely used to test the ef-
ficacy and toxicity of novel therapeutics, as they 
are relatively more reproducible and consume less 
time and labor compared to PDXs and GEMMs. 
Nevertheless, PDXs can offer more actual clues in 
human glioma TME and GEMMs enable tumori-
genesis investigation on a molecular level, both of 
which facilitate in-depth research on human glio-
ma (Daniel et al., 2009; Klein et al., 2020; Xu et 
al., 2023).  

However, it is imperative to acknowledge that 
no single model can comprehensively recapitulate 
diverse facets of gliomas, as each model has its 
inherent limitations. As such, selecting a suitable 
combination of these models based on specific re-
search objectives would effectively enhance the 
fundamental understanding of glioma, facilitate the 
development of novel drugs, and promote transla-
tional applications (Ren et al., 2023). 
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