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ABSTRACT 

Biogenic nanoparticles (NPs) derived from microbes present an excellent 

opportunity to deal with various challenges in medicine, diagnosis, 

environment and agriculture. In the area of agriculture sciences, researchers are 

facing challenges related to excessive utilization of pesticides which can be 

answered by utilizing plant growth-promoting (PGP) microbes. Herein, we 

have employed the culture filtrate of two PBP bacteria strains, Serratia 

marcescens and Burkholderia cepacia to prepare biogenic silver NPs. The 

biogenic silver NPs were characterized by various techniques viz. UV-VIS 

spectroscopy, SEM, XRD and FTIR. The biogenic AgNPs were able to control 

the growth of phytopathogenic fungi Aspergillus niger, A. fumigatus, Fusarium 

oxysporum, Pythium sp., and Rosellinia sp. by more than 80% as examined by 

in vitro growth reduction on agar medium. Very significantly, the growth 

inhibition of seedlings by phytopathogenic fungi was efficiently rescued using 

biogenic AgNPs derived from PGP bacteria. These results indicate the potential 

use of biogenic NPs to reduce the burden of chemical-based pesticides.    
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Introduction 

Nearly 90% of pesticides sprayed in modern 

agricultural pest and disease management 

systems are lost to the air and run-off, causing 

financial and environmental harm to farmers and 

the environment (Stephenson et al., 2001). 

Furthermore, pesticides are also used 

indiscriminately, raising resistance in pathogens, 

lowering nitrogen fixation, reducing biodiversity 

of soil, and increasing pesticide accumulation 

(Tilman et al., 2002). These are important 

concerns that demand much attention(Rana et al., 

2021). 

New pesticide concepts based on 

nanotechnology, collectively known as 

"nanopesticides," are expected to address these 

issues. Most of the nanopesticides and 

nanofertilizers presented so far involve the 

reformulation of registered active ingredients 

(AIs) to improve performance over existing AIs 

and address the major limitations of current 

agrochemical products (Kah et al., 2013). 

Nanopesticides could address the major 
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drawbacks of current pest control strategies 

(Smith et al., 2008).  

Based on the requirement of nutrient different 

type of nano-fertilizers are required like macro 

nano-fertilizers, micron nano-fertilizers and 

nano-particulate fertilizers (Chhipa, 2017). To 

produce these desirable nutrients, 

microorganisms are grown on selected media 

providing all suitable conditions like pH, 

temperature, and carbon source. Then 

extracellular proteins (act as a nutrient) are 

separated using a filtration technique, and size is 

adjusted according to their need (Patel and 

Krishnamurthy, 2015). Adapting to 

environmental conditions nano-fertilizers secret 

their required compound using slow release and 

target delivery mechanism (Manjunatha et al., 

2016). 

The utilisation of bioactive components derived 

from microorganisms, plants and other biological 

sources has introduced a new category of nano-

bio-pesticides that are more effective and have a 

lower environmental impact(Abdel-Azeem et al., 

2020; Ates et al., 2020). In the present study, 

culture filtrate (cell-free suspension) of plant 

growth-promoting rhizobacteria, Serratia 

marcescens (86e-NPs) and Burkholderia cepacia 

(15-AB-NPs) was used for the green production 

of AgNPs. All the biogenic nanocomposites were 

further characterized by UV-Visible 

spectroscopy, EDS, SEM, XRD and FT-IR. 

Additionally, the bactericidal activity of 86e-NPs 

and 15-AB-NPs was tested against fungal 

pathogens. In plantae experiment was also done 

revealed the plant growth promotion after the 

treatment of gram seeds with green nanoparticles.  

Research Methodology  

Microbes used in the study 

The bacterial strains Serratia marcescens and 

Burkholderia cepacia were isolated earlier by our 

lab (Mittal et al., 2019). As described earlier, the 

pure cultures were maintained in nutrient broth 

and on agar medium (HiMedia, Mumbai, India) 

(Mittal et al., 2019). A total of five fungal 

pathogens were taken for the study i.e. Fusarium 

oxysporum; Aspergillus niger; Aspergillus 

fumigatus; Pythium sp. and Rosellinia sp. 

Preparation of culture filtrate and synthesis of 

biogenic NPs 

Both bacterial strains were inoculated in 300 ml 

nutrient broth media in flasks and were incubated 

on an orbital shaker at 300C and at 150 rpm for 

72 hrs. The culture filtrate (CF) was harvested 

after 72 hrs of growth by centrifugation. The CF 

was filtered through 0.45 um filtered and 

autoclaved at 1210C. Biogenic NPs were 

synthesized as described earlier with some 

modifications (Petatan-Sagahon et al., 2011). 

Briefly, the sterilized CF was mixed with silver 

nitrate (1 mM) on a magnetic stirrer, and 1% PEG 

was added to the reaction mixture as a stabilizing 

agent. The reaction was carried out at for 90 

minutes under stirring conditions in dark 

conditions. 

Further, the mixture was left overnight under 

dark conditions till the color changes to dark 

brown. The mixture was centrifuged and washed 

thrice with distilled water and obtained pellet was 

further dried at 80 °C. 

Physical characterization of biogenic NPs.  

The biogenic NPs were characterized by various 

techniques as described earlier (Raizada et al., 

2016). The UV –Vis spectra of the purified NPs 

suspension in the wavelength range 300 – 800 nm 

was taken using Shimadzu UV 2600 

spectrophotometer. After that, Energy dispersive 

X-ray chemical (EDS) analysis, scanning 

electron microscopy (SEM), X-ray diffraction 

(XRD) spectroscopy and Fourier transform 

infrared spectroscopy (FTIR) was done.  

Biocontrol activity of NPs 

The antagonistic activity of biogenic NPs was 

examined against pathogenic fungi. For this 

potato dextrose agar media containing NPs was 

used. The fungal disc was placed in the center and 

growth in the presence and absence of NPs was 

compared after incubating the fungal disc 

Fusarium oxysporum; Aspergillus niger; 

Aspergillus fumigatus; Pythium sp. and 

Rosellinia sp. at 28 °C for 7 days as described 

earlier (Mittal et al., 2019). For analysing the 

impact of NPs in controlling the adverse effects 

of phytopathogenic fungi, the surface-sterilized 

gram (chick pea) seedlings were grown in dark at 

25 °C under moist conditions (Gupta et al., 2016). 

On the fourth day, the germinated seedlings were 

incubated with fungal strain (1.8x 105 cells/ml) 

for 1 hr and grown at 25 °C under moist 

conditions. 

Further on the sixth day the seeds were treated 

with 100 µl of bio-nano pesticides and grown in 

dark at 25 °C under moist conditions. Seeds 

treated with normal water and fungal pathogens 

were taken as control. After 16 days of treatment, 

root length and shoot length were measured 

(Narayan et al., 2017). 
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Results and discussions 

The increasing pressure to improve the 

agriculture productivity relies on the use of 

chemical fertilizer to improve nutrients 

availability and the use of pesticides to inhibit the 

growth of phytopathogens. Both the methods 

improve agriculture productivity but cause 

various harmful effects. Indiscriminate use of 

pesticides threatens the quality of produce as well 

as the health of soil. Our lab has shown that these 

challenges can be answered by using plant 

growth promoting microbes that act as 

biofertilizers and biocontrol agents (Devi et al., 

2013; Khatri et al., 2013; Gupta et al., 2016; 

Mittal et al., 2019). Previously, we isolated the 

plant growth promoting bacterial strains Serratia 

marcescens 86e and Burkholderia cepacia 

15AB, abbreviated as SM-86e and BC-15AB 

(Mittal et al., 2019). Herein we further want to 

utilize both strains for developing biogenic 

nanoparticles and analyze them for biofertilizer 

and biocontrol activities. 

 

Culture filtrate of SM-86e and BC-15AB 

exhibit antifungal activity 

The culture filtrate from SM-86e and BC-15AB 

was tested to exhibit antifungal activity against 

Fusarium oxysporum, Aspergillus niger, 

Aspergillus fumigatus, Pythium sp. and 

Rosellinia sp. Both bacterial strains showed 

antimicrobial activity against the tested strain . In 

addition, SM-86e and BC-15AB inhibited the 

growth of Fusarium oxysporum, Aspergillus 

niger, Aspergillus fumigatus, Pythium sp. and 

Rosellinia sp. by more than 80% data not shown. 

Nanoparticles can affect plants metabolic 

activities and can mobilise nutrients like 

phosphorous in the rhizosphere (Zahra et al., 

2015). Nano-material like carbon and metal 

based are used to perform functions like storage, 

assimilation, transportation of minerals which 

have role in increasing the crop productivity 

(Nair et al., 2010). 

Thereafter, we tested the impact of the culture 

filtrate (CF) of SM-86e and BC-15AB for 

inhibiting the growth of Fusarium oxysporum. 

The autoclaved CF of SM-86e and BC-15AB did 

not allow the growth of Fusarium oxysporum 

(Figure 1A (b-c)) as compared to the control 

(Figure 1A (a)). Now we went on to prepare the 

NPs by using the CF of  SM-86e and BC-15AB. 

  
Figure 1A. Antifungal activity of the CF against 

phytopathogen. The potato dextrose broth (a), CF 

of SM-86e (b) and BC-15AB (c) were inoculated 

with Fusarium sp. and growth was visualized. All 

the experiments are done in triplicates. 

 
Figure 1B. UV-Vis Spectroscopy for 86e-NPs 

(blue) and 15-AB-NPs (orange). The λ max was 

around 438 nm and 432 nm for 86e-NPs and 15-

AB-NPs respectively. 

Physico-chemical Characterization of 

biogenic NPs from SM-86e and BC-15AB 

Silver NPs were synthesized from CF of SM-86e 

and BC-15AB (abbreviated as 86e-NPs and 15-

AB-NPs). Initially the synthesis of 86e-NPs and 

15-AB-NPs was confirmed by UV-VIS 

spectroscopy. The 86e-NPs and 15-AB-NPs 

showed peaks at 438 nm and 432 nm, which is 

surface plasmon resonance of silver 

nanoparticles (Figure 1B) The UV spectra 

indicated green synthesis of  these nanoparticles 

by using CF of SM-86e and BC-15AB as silver 

nanoparticles depict characteristic absorption 

spectra around 400-500 nm.   

FT-IR, SEM-EDS and XRD analysis of NPs 

The FT-IR spectra (Figure 2 (a-b)) of the CF of 

SM-86e and BC-15AB were analyzed to 

determine the functional groups involved in 

reducing the silver nanoparticles. The spectrum 

of 86e-NPs showed a peak at 3252 cm-1 depicting 
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the involvement of hydroxyl functional groups 

from polyphenols in the biosynthesis of these 

nanoparticles. The peak at 1647 cm−1 in CF of 

SM-86e shifted to 1634 cm−1 in 86e-NPs (Figure 

2a), suggesting that ether (C=C) functional group 

are involved in the synthesis. Similarly, the 

spectrum of CF of BC-15AB showed a  peak at 

3297 cm-1 that reflects O-H stretching of 

hydroxyl groups from polyphenols and 

polysaccharides. This peak shifted to 3320 cm−1 

in 15-AB-NPs (Figure 2b), suggesting the role of 

hydroxyl groups in the nanoparticles' bio-

reduction. A vibrational peak at 2877 cm-1 in 15-

AB-NPs showed the presence of CH3 group. The 

15-AB-NPs spectrum exhibited a peak at 1673 

cm−1 corresponding to the vibrations of the amine 

groups (NH2). Peaks at 1066 and 1078 cm−1 in CF 

of SM-86e and BC-15AB shifted to 1033 and 

1101 cm−1 in 86e-NPs and 15-AB-NPs (Figure 

2), respectively, indicating the involvement of C-

O-C alkyl-substituted ether stretch. The presence 

of aliphatic bromo and aliphatic chloro 

compounds can be estimated at the peak range of 

700 - 600 and 800 - 900 cm−1.  

SEM images showed the spherical structure of  

86e-NPs and 15-AB-NPs (Figure 2c and d). The 

EDS elemental composition of the nanoparticles 

showed higher counts of silver at 3 keV, which 

are characteristic for the absorption of Ag 

nanocrystallites owing to SPR, thus endorsing the 

synthesis of these nanoparticles (Figure 3Aa and 

3Ba) The presence of other elements like carbon, 

oxygen, boron, chlorine, and nitrogen etc. were 

also detected by EDS (Figure 3A and 3B). 

 

 

 

Figure 2. FTIR and SEM Analysis. FTIR spectra of (a) 86e-NPs (red) and CF (blue) and, (b) 15-AB-NPs 

(red) and CF (blue). SEM images of the biogenic nanoparticles (c) 86e-NPs (d) 15-AB-NP.

 

(a) (b)

(c)                                                            ( d)
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Figure 3A. EDS Analysis of 86e-NPs. (a) Elemental composition of 86e-NPs and, (b) SEM image for 86e-

NPs. Different elements present are shown in different panels. (c) Silver, (d) Carbon, (e) Nitrogen, (f) Boron, 

(g) Oxygen and, (h) Chlorine. 

 
Figure 3B: EDS Analysis of 15-AB-NPs. (a) Elemental composition of 15AB-NPs and, (b) SEM image for 

15-AB-NPs. Different elements present are shown in different panels. (c) Ag (Silver), (d) Chlorine, (e) 

Nitrogen, (f) Phosphorus, (g) Sulphur, (h) Carbon and, (i) Sodium. 

The X-Ray diffractogram of 86e-NPs and 15-AB-NPs (Figure 4a and b) showed a crystalline structure. The 

peaks observed at 32.2°, 46.3°, 55°, 57.6° and 76.8° in the 2θ range, correspond to the (200), (220), (311), 

(222) and (311) reflection planes, respectively, depicting silver as nanocrystals with face-centered cubic 

structure of the standard powder diffraction card of Joint Committee on Powder Diffraction Standards 

(JCPDS), silver file No. 04-0783 (Kumari et al., 2020).  
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Figure 4. XRD-Analysis of  (a) 86e-NPs and, (b) 

15-AB-NPs. 

86e-NPs and 15-AB-NPs exhibit biocontrol 

activity 

Media containing 86e-NPs and 15-AB-NPs was 

utilized to analyse the antimicrobial activity 

against Fusarium oxysporum, Aspergillus niger, 

Aspergillus fumigatus, Pythium sp. and 

Rosellinia sp. We found that both 86e-NPs and 

15-AB-NPs did not allow the growth of 

respective fungus on PDA media. The percentage 

inhibition for both the NPs was almost 80% in 

which the fungal disc was not able to grow at all 

as shown in (Figure 5). It is interesting to observe 

that the CF contents from both the bacterial 

strains could inhibit the growth in the present 

formulation with Ag. We also found that AgNPs 

could inhibit fungal growth, as seen in the AgNPs 

panel.  

 
Figure 5. The figure depicts antifungal activity 

of 86e-NPs (b), 15-AB-NPs (c) and Ag-NPs (d) 

against  different phytopathogens. Row 

1 Fusarium oxysporum, row 2 Aspergillus niger , 

row 3 Aspergillus fumigatus,  row 4 Pythium sp. 

and row 5 Rosellinia sp. PDA agar plates were 

supplemented with or without NPs (control) and 

fungi were allowed to grow. All the experiments 

are done in triplictaes. 

Ghiuta et al., 2018 used B. amyloliquefaciens and 

B. subtilis, to synthesize Ag-NPs against Candida 

albicans. In another approach, the bioformulation 

of Ag-NPs by using the supernatant of Serratia 

sp. BHU-S4 showed antifungal activity against 

Bipolaris sorokiniana which cause foliar spot 

blotch disease in wheat (Mishra et  al., 2014). 

Mishra et al., 2017 found that Stenotrophomonas 

sp. BHU-S7, could biosynthesize spherical Ag-

NPs extracellularly. It was hypothesized that 

extracellular enzymes (like nitrate reductase) or 

other proteins present in CF could help in 

electron transfer to Ag+ ions, yielding Ag-NPs. 

Another possibility is the involvement of protein 

based carbonyl groups, -SH,  -OH,–NH2, or –

COOH could stabilize the Ag-NPs by binding to 

their surface. By assisting in providing the 

binding sites for fixing Ag+ ions. Li et al., 2018 

reported the preparation of Au-NPs, Ag-NPs and 

Au-Ag NPs via protein extracts of Deinococcus 

radiodurans extremophilic bacteria showed low 

cytotoxicity against non-tumorigenic epithelial 

cell lines. 

 
Figure 6A. Effect of Ag-NPs and 86e-NPs on 

gram seeds A. Normal control seeds, B. Fungus 
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(Fusarium oxysporum) treated seeds, C. Ag-NPs 

treated seeds and D. 86e-Nps treated seeds. 

 
Figure 6B: Effect of Ag-Nps and 15-AB-Nps on 

gram seeds A. Normal control seeds, B. Fungus 

(Fusarium oxysporum) treated seeds, C. Ag-NPs 

treated seeds and D. 86e-Nps treated seeds D. 15-

AB-Nps treated seeds. 

Further, it was found that green silver 

nanoparticles prepared by Bacillus sp. strain 

GP23  isolated from marine soil inhibit the 

growth of pathogenic fungi Fusarium 

oxysporum. This fungal strain was responsible 

for wilting of tobacco, banana, sweet potatoes, 

legumes, cucurbits and tomatoes (Gopinath and 

Velusamy, 2013). In another study, graphite and 

silica NPs were developed using endophytic 

bacteria Lysinibacillus and plant growth-

promoting bacteria B. subtilis  and P. fluorescens 

reduces the wilting of potato caused by Ralstonia 

solanacearum aerobic non-spore-forming 

bacteria. Additionally, Lin et al. worked on 

nanocrystallization in which he made 

nanocrystals of the cyclic lipopeptides extracted 

from Bacillus subtilis to inhibit the growth of 

Aspergillus carbonarius (Lin et al., 2020). In 

another study, silver nanoparticles were made by  

Bacillus sp. exhibited antifungal activity against 

Colletotrichum falcatum causal organism of ret 

rot of sugarcane (Ajaz et al., 2021). Besides, Qin 

et al. used nanoscale B. thuringiensis chitinases 

to deliver nematicidal material against 

Caenorhabditis elegans better. Hence, apart from 

pesticidal activity nanoformulation made from 

microbes can work as an excellent biopesticidal 

delivery system (Qin et al., 2020). 

 
Figure 6c. Growth of seedlings after 16 days as 

shown in Fig 6A. (a) control seeds, (b) AgNPs 

treated seeds (c) 86e-NPs treated seeds, (d) 

fungus treated seeds, (e) AgNPs + fungus treated 

seeds and (f) 86e-NPs+fungus treated seeds. A 

representative among 25 seedlings is shown here.  

 
Figure 6d. Growth of seedlings after 16 days as 

shown in Fig 6B. (a) control seeds, (b) AgNPs 

treated seeds (c) 15-AB-NPs treated seeds, (d) 

fungus treated seeds, (e) AgNPs + fungus treated 

seeds and (f) 15-AB-NPs +fungus treated seeds. 

A representative among 25 seedlings is shown 

here. 

We previously found that bacterial strains could 

inhibit the impact of phytopathogens on the 

growth of seedlings. To provide evidence that the 

microbial CF-derived AgNPs could inhibit the 

impact of fungal pathogens, we treated the 

sterilized seedlings with 86e-NPs and 15-AB-

NPs and analyzed the effect of phytopathogens. 

Seeds treated with normal water or pathogens 

alone were taken as control. We found that 

Fusarium oxysporum did not allow the seedlings 

to grow as compared to the water-treated control 

seedlings or AgNPs treated seedlings (Figure 6 A 

and B). Interestingly we found that on 8th day the 

seeds treated with 86e-NPs or 15-AB-NPs 

(Figure 6 A and B) were able to rescue the impact 

of the phytopathogens.  

When the seedlings were allowed to grow further, 

we found that there is a remarkable inhibition on 

decreasing the impact of phytopathogen. The 

seeds treated with phytopathogen could not grow 

(Figure 6) compared to uninfected seedlings 

(Figure 6). Importantly, we found that the seeds 

treated with 86e-NPs or 15-AB-NPs rescued the 

growth inhibition by Fusarium. We also 

observed that the AgNPs could rescue the growth 

inhibition by Fusarium, but the growth of 86e-

NPs or 15-AB-NPs treated seeds was better. The 

average shoot length of untreated seedlings and 

AgNPs treated seedlings was 11.75 cm and ~7 cm 

indicating a negative impact of AgNPs. 

Similarly, the root length of untreated seedlings 

and AgNPs treated seedlings was 10 cm and ~7 

cm. The average root length and shoot length of 

86e-NPs or 15-AB-NPs was 9 cm and 10 cm, 

respectively. Altogether we observed that 86e-

NPs or 15-AB-NPs showed an intense biocontrol 

activity. Surprisingly we found that both the 86e-

NPs or 15-AB-NPs dramatically increased the 

shoot length of seedlings to ~16 cm treated with 

phytopathogen. Taken together our results 
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indicate a positive impact of 86e-NPs or 15-AB-

NPs on inhibiting the deleterious effects of fungal 

pathogens. 

Conclusions 

The application of the nanopesticides on the 

seeds controls the phytopathogen fungal strains 

and accelerates their growth, which is a 

remarkable outcome of the synthesized 

nanoparticles from the microbes. Generally, 

these microbes are found in the soil exhibiting 

biofertilizer activity. The bio-control mechanism 

is unknown for now, but more research is 

required to find out the possible mechanism of 

their activity and the drug delivery system of the 

nanoparticles to the plants by foliar and root 

pathways. Also, the impact of these nanoparticles 

on human health is to be studied. The synthesized 

nanoparticles using the strains SM-86e and BC-

15AB exhibit high biocontrol activity compared 

to the Ag-NPs. Also, their retention of 

biofertilizer activity before nanoformulation is 

also considerable. It directs future studies to 

confer nanoscale formulations from more bio-

fertilizing bacterial species for the pesticidal role 

to counter the phytopathogen fungal strains that 

destroy agriculture crops. 
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