Skip to main content Skip to main navigation menu Skip to site footer

Exceptional Preservation of Feather Micro-Structures in Amber from the Middle-Cretaceous of Myanmar

  • Christian Laurent
  • Xia Wang
  • Bo Wang
  • Zhiheng Li


Feathers are under-represented in the fossil record because soft tissues do not usually preserve well in sedimentary sequences. Fossil feathers are nevertheless extremely important in resolving pattern and process related to the origin of dinosaur flight. In recent years, a number of feathers have been discovered which have been mummified in amber; these feathers are preserved in three dimensions with remarkable sub-microscopic details and are especially important for our understanding of the early development of feathers. In this paper, we describe a diverse assemblage of mid-Cretaceous feathers contained within seven pieces of amber that have been recovered from northern Myanmar (Burma). These pieces include pennaceous primary feathers, contour feathers, and rachis-dominated feathers, and also a plumulaceous (downy) feather. Subcomponents of these feathers, such as barbs, barbules, and nodes are immediately recognizable. One extraordinary piece contains the distal remains of the first four primary flight feathers and a small number of possible hooklets. These pieces are discussed in terms of evolutionary development and comments are made on flight ability where appropriate. These feather-types are classified and compared with similar structures seen in Mesozoic and extant birds. We consider that integumentary feathers and ‘feather-like’ structures fall within two major structural categories (‘shafted’ and ‘non-shafted’).



  1. Allen, V., K. T. Bates, Z. Li, and J. R. Hutchinson. 2013. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs. Nature.
  2. Alonso, J., A. Arillo, E. Barrón, J. C. Corral, J. Grimalt, J. F. López, R. López, X. Martínez-Delclòs, V. Ortuño, E. Peñalver, and P. R. Trincão. 2000. A new fossil resin with biological inclusions in lower Cretaceous deposits from Álava (northern Spain, Basque-Cantabrian basin). Journal of Paleontology.
  3. Benton, M. J. 2005. Vertebrate Palaeontology. Blackwell Science, 455 pp.
  4. Carroll, N. R., L. M. Chiappe, and D. J. Bottjer. 2019. Mid-Cretaceous amber inclusions reveal morphogenesis of extinct rachis-dominated feathers. Scientific Reports 9:1–8.
  5. Chiappe, L. M., and J. Calvo. 1994. Neuquenornis Volans, a new late cretaceous bird (enantiornithes: Avisauridae) from Patagonia, Argentina. Journal of Vertebrate Paleontology.
  6. Chiappe, L. M., and C. A. Walker. 2002. Skeletal Morphology and Systematics of the Cretaceous Euenantiornithes (Ornithothoraces: Enantiornithes); pp. in Mesozoic birds: above the heads of dinosaurs.
  7. Clarke, J. A. 2013. Feathers before flight. Science 340:690–692.
  8. Cruickshank, R. D., and K. Ko. 2003. Geology of an amber locality in the Hukawng Valley, Northern Myanmar. Journal of Asian Earth Sciences 21:441–455.
  9. Davis, P. G., and D. E. G. Briggs. 1995. Fossilization of feathers. Geology 23:783.
  10. Dyke, G., R. de Kat, C. Palmer, J. Van Der Kindere, D. Naish, and B. Ganapathisubramani. 2013. Aerodynamic performance of the feathered dinosaur Microraptor and the evolution of feathered flight. Nature Communications 4.
  11. Ennos, A. R., J. R. E. Hickson, and A. Roberts. 1995. Functional morphology of the vanes of the flight feathers of the pigeon Columba livia. The Journal of Experimental Biology.
  12. Feduccia, A. 1999. The Origin and Evolution of Birds. Yale University Press, Newhaven, CT, 466 pp.
  13. Feduccia, A., and H. B. Tordoff. 1979. Feathers of Archaeopteryx: asymmetric vanes indicate aerodynamic function. Science (New York, N.Y.) 203:1021–2.
  14. Feo, T. J., D. J. Field, and R. O. Prum. 2015. Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight. Proceedings of the Royal Society B: Biological Sciences. 282.
  15. Foth, C., H. Tischlinger, and O. W. M. Rauhut. 2014. New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers. Nature 511.
  16. Fountaine, T. M. R., M. J. Benton, G. Dyke, and R. L. Nudds. 2005. The quality of the fossil record of Mesozoic birds. Proceedings of the Royal Society B: Biological Sciences 272:289–294.
  17. Grimaldi, D. A., and G. R. Case. 1995. A feather in amber from the Upper Cretaceous of New Jersey. American Museum Novitates 3126:1–6.
  18. Grimaldi, D. A., M. S. Engel, and P. C. NASCIMBENE. 2002. Fossiliferous cretaceous amber from Myanmar (Burma): Its rediscovery, biotic diversity, and paleontological significance. American Museum Novitates 3361:1–71.
  19. Heers, A. M., and K. P. Dial. 2012. From extant to extinct: locomotor ontogeny and the evolution of avian flight. Trends in Ecology & Evolution 27:296–305.
  20. Heers, A. M., K. P. Dial, and B. W. Tobalske. 2014. From baby birds to feathered dinosaurs: incipient wings and the evolution of flight. Source: Paleobiology 40:459–476.
  21. Hu, D., L. Hu, L. Zhang, and X. Xu. 2009. A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature 461:640–643.
  22. Ji, Q., M. Norell, K. Gao, S. Ji, and D. Ren. 2001. The distribution of integumentary structures in a feathered dinosaur. Nature 410:1084.
  23. Kellner, A. 2002. A review of Avian Mesozoic fossil feathers; pp. 389–404 in L. M. Chiappe and L. M. Witmer (eds.), Mesozoic birds: above the heads of dinosaurs. University of California Press, Oakland, CA.
  24. Knight, T. K., P. S. Bingham, R. D. Lewis, and C. E. Savrda. 2011. Feathers of the Ingersoll Shale, Eutaw Formation (Upper Cretaceous) of eastern Alabama: the largest collection of feathers from north american mesozoic rocks. PALAIOS 26:364–376.
  25. Kovalev, A., A. E. Filippov, and S. N. Gorb. 2013. Unzipping bird feathers. Journal of The Royal Society Interface 11:20130988–20130988.
  26. Lees, J., T. Garner, G. Cooper, and R. Nudds. 2017. Rachis morphology cannot accurately predict the mechanical performance of primary feathers in extant (and therefore fossil) feathered flyers. Royal Society Open Science 4.
  27. Li, A., S. Figueroa, T.-X. Jiang, P. Wu, R. B. Widelitz, Q. Nie, and C.-M. Chuong. 2017. Diverse feather shape evolution enabled by coupling anisotropic signalling modules with self-organizing branching programme. Nature Communications 8:ncomms14139.
  28. Liu, D., L. M. Chiappe, F. Serrano, M. Habib, Y. Zhang, and Q. Meng. 2017. Flight aerodynamics in enantiornithines: Information from a new Chinese Early Cretaceous bird. PLOS ONE 12:e0184637.
  29. Livezey, B. C. 2003. Evolution of flightlessness in Rails (Gruiformes: Rallidae): Phylogenetic, ecomorphological, and ontogenetic perspectives. Ornithological Monographs.
  30. Lucas, A. M., and P. R. Stettenheim. 1972. Avian Anatomy: Integument (Agricultural Handbook 362). United States Department of Agriculture, Michigan, pp.
  31. Martínez-Delclòs, X., D. E. G. Briggs, and E. Peñalver. 2004. Taphonomy of insects in carbonates and amber. Palaeogeography, Palaeoclimatology, Palaeoecology 203:19–64.
  32. Marugán-Lobón, J., and R. Vullo. 2011. Feather diversity in the Barremian (Early Cretaceous) of Las Hoyas, Spain. Comptes Rendus - Palevol 10:219–223.
  33. McKellar, R. C., B. D. E. Chatterton, A. P. Wolfe, and P. J. Currie. 2011. A diverse assemblage of Late Cretaceous dinosaur and bird feathers from Canadian amber. Science 333:1619–22.
  34. Nascimbene, P. C., C. J. Dove, D. A. Grimaldi, and A. Schmidt. 2014. Exceptional preservation of feather microstructures in amber from diverse faunas (Theropoda: Paraves) during the Lower and mid-Cretaceous. 9th European Palaeobotany-Palynology Conference 113–114.
  35. Norberg, R. A. 1985. Function of vane assymetry and shaft curvature in bird flight feathers: Inferences on flight ability of Archaeopteryx; pp. 303–318 in M. Hecht, J. Ostrom, G. Violh, and P. Wellnhofer (eds.), The Beginnings of Birds. Freunde des Jura-Museums, Eichstatt.
  36. Norberg, R. A. 1995. Feather assymetry in Archaeopteryx. Nature 374:221.
  37. Norell, M., J. M. Clark, and L. M. Chiappe. 2001. An embryonic oviraptorid (Dinosauria: Theropoda) from the Upper Cretaceous of Mongolia. American Museum Novitates 1–20.
  38. Nudds, R. L., and G. Dyke. 2010. Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability. Science 328:887–9.
  39. Nudds, R. L., G. Dyke, and J. Rayner. 2004. Forelimb proportions and the evolutionary radiation of Neornithes. Proceedings of the Royal Society B: Biological Sciences.
  40. Peñalver, E., A. Arillo, X. Delclòs, D. Peris, D. A. Grimaldi, S. R. Anderson, P. C. Nascimbene, and R. Pérez-de la Fuente. 2017. Ticks parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages. Nature Communications 8:1924.
  41. Penney, D. 2010. Biodiversity of fossils in amber from the major world deposits. 304.
  42. Perrichot, V., L. L. Marion, D. Neraudeau, R. Vullo, and P. Tafforeau. 2008. The early evolution of feathers: fossil evidence from Cretaceous amber of France. Proceedings of the Royal Society B: Biological Sciences 275:1197–1202.
  43. Proctor, N., and P. Lynch. 1994. Manual of Ornithology : Avian Structure and Function. Yale University Press, New Haven, 288–289 pp.
  44. Prum, R. O. 1999. Development and evolutionary origin of feathers. The Journal of Experimental Zoology 285:291–306.
  45. Prum, R. O., and A. H. Brush. 2002. The evolutionary origin and diversification of feathers. The Quarterly Review of Biology 77:261–95.
  46. Rayner, J. 1988. The evolution of vertebrate flight. Biological Journal of the Linnean Society 34:269–287.
  47. Rayner, J., G. Dyke, V. Bels, J. Gasc, and A. Casinos. 2002. Evolution and Origin of Diversity in the Modern Avian Wing. In Vertebrate Biomechanics and Evolution (V. Bels, J. Crasc, and A. Casinos (eds.)). Bios Scientific Publishers, London, 297–317 pp.
  48. Ross, A. 1998. Amber: The Natural Time Capsule. The Natural History Museum, London, 73 pp.
  49. Ross, A., C. Mellish, P. York, and B. Crighton. 2010. Burmese Amber; pp. 208–235 in D. Penney (ed.), Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester.
  50. Sawyer, R. H., and L. W. Knapp. 2003. Avian skin development and the evolutionary origin of feathers. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution 298:57–72.
  51. Sayão, J. M., A. A. F. Saraiva, and A. M. K. Uejima. 2011. New evidence of feathers in the Crato Formation supporting a reappraisal on the presence of Aves. Anais Da Academia Brasileira de Ciencias 83:197–201.
  52. Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9:676–82.
  53. Senter, P., and P. S. Edu. 2006. Scapular orientation in theropods and basal birds, and the origin of flapping flight. Acta Palaeontologica Polonica 51:305–313.
  54. Serrano, F., L. M. Chiappe, P. Palmqvist, B. Figueirido, J. Marugán-Lobón, and J. L. Sanz. 2018. Flight reconstruction of two European enantiornithines (Aves, Pygostylia) and the achievement of bounding flight in Early Cretaceous birds. Palaeontology 61:359–368.
  55. Shi, G., D. A. Grimaldi, G. E. Harlow, J. Wang, J. Wang, M. Yang, W. Lei, Q. Li, and X. Li. 2012. Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research 37:155–163.
  56. Sick, H. 1993. Birds in Brazil: A Natural History. Princeton University Press, 570 pp.
  57. Smith, R. D. A., and A. Ross. 2018. Amberground pholadid bivalve borings and inclusions in Burmese amber: implications for proximity of resin-producing forests to brackish waters, and the age of the amber. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 107:239–247.
  58. de Souza Carvalho, I., F. E. Novas, F. L. Agnolin, M. P. Isasi, F. I. Freitas, and J. A. Andrade. 2015. A Mesozoic bird from Gondwana preserving feathers. Nature Communications 6:7141.
  59. Sullivan, T. N., M. Chon, R. Ramachandramoorthy, M. R. Roenbeck, T. T. Hung, H. D. Espinosa, and M. A. Meyers. 2017. Reversible attachment with tailored permeability: The feather vane and bioinspired designs. Advanced Functional Materials 27:1702954.
  60. Thomas, D. B., P. C. Nascimbene, C. J. Dove, D. A. Grimaldi, and H. F. James. 2014. Seeking carotenoid pigments in amber-preserved fossil feathers. Scientific Reports 4:1–71.
  61. Vazquez, R. J. 1992. Functional osteology of the avian wrist and the evolution of flapping flight. Journal of Morphology.
  62. Wang, X., A. J. McGowan, and G. Dyke. 2011. Avian Wing Proportions and Flight Styles: First Step towards Predicting the Flight Modes of Mesozoic Birds. PLoS ONE 6:e28672.
  63. Wang, X., J. K. O’Connor, X. Zheng, M. Wang, H. Hu, and Z. Zhou. 2014. Insights into the evolution of rachis dominated tail feathers from a new basal enantiornithine (Aves: Ornithothoraces). Biological Journal of the Linnean Society 113:805–819.
  64. Wu, P., L. Hou, M. Plikus, M. Hughes, J. Scehnet, S. Suksaweang, R. B. Widelitz, T.-X. Jiang, and C.-M. Chuong. 2004. Evo-Devo of amniote integuments and appendages. The International Journal of Developmental Biology 48:249–70.
  65. Xing, L., J. K. O’Connor, R. C. McKellar, L. M. Chiappe, M. Bai, K. Tseng, J. Zhang, H. Yang, J. Fang, and G. Li. 2018a. A flattened enantiornithine in mid-Cretaceous Burmese amber: morphology and preservation. Science Bulletin 63:235–243.
  66. Xing, L., R. C. Mckellar, M. Wang, M. Bai, J. K. O ’connor, M. J. Benton, J. Zhang, Y. Wang, K. Tseng, M. G. Lockley, G. Li, W. Zhang, and X. Xu. 2016a. Mummified precocial bird wings in mid-Cretaceous Burmese amber. Nature Communications 7.
  67. Xing, L., R. C. McKellar, X. Xu, G. Li, M. Bai, W. S. Persons, T. Miyashita, M. J. Benton, J. Zhang, A. P. Wolfe, Q. Yi, K. Tseng, H. Ran, and P. J. Currie. 2016b. A Feathered Dinosaur Tail with Primitive Plumage Trapped in Mid-Cretaceous Amber. Current Biology 26:3352–3360.
  68. Xing, L., R. C. McKellar, and J. K. O’Connor. 2020a. An unusually large bird wing in mid-Cretaceous Burmese amber. Cretaceous Research 110:104412.
  69. Xing, L., P. Cockx, and R. C. McKellar. 2020b. Disassociated feathers in Burmese amber shed new light on mid-Cretaceous dinosaurs and avifauna. Gondwana Research 82:241–253.
  70. Xing, L., P. Cockx, R. C. McKellar, and J. K. O’Connor. 2018b. Ornamental feathers in Cretaceous Burmese amber: resolving the enigma of rachis-dominated feather structure. Journal of Palaeogeography 7:13.
  71. Xing, L., P. Cockx, R. C. McKellar, and J. O’Connor. 2018c. Ornamental feathers in Cretaceous Burmese amber: resolving the enigma of rachis-dominated feather structure. Journal of Palaeogeography 7:1–18.
  72. Xing, L., R. C. McKellar, J. K. O’Connor, M. Bai, K. Tseng, and L. M. Chiappe. 2019. A fully feathered enantiornithine foot and wing fragment preserved in mid-Cretaceous Burmese amber. Scientific Reports 9.
  73. Xing, L., J. K. O’Connor, R. C. McKellar, L. M. Chiappe, K. Tseng, G. Li, and M. Bai. 2017. A mid-Cretaceous enantiornithine (Aves) hatchling preserved in Burmese amber with unusual plumage. Gondwana Research 49:264–277.
  74. Xu, X. 2006. Feathered dinosaurs from China and the evolution of major avian characters. Integrative Zoology 1:4–11.
  75. Xu, X., and Y. Guo. 2009. The origin and early evolution of feathers: Insights from Recent paleontological and neontological data. Vertebrata Palasiatica 47:311–329.
  76. Xu, X., X. Zheng, and H. You. 2010. Exceptional dinosaur fossils show ontogenetic development of early feathers. Nature 464:1338–41.
  77. Zhang, F., Z. Zhou, and G. Dyke. 2006. Feathers and “feather-like” integumentary structures in Liaoning birds and dinosaurs. Geological Journal 41:395–404.
  78. Zhang, F., L. Jiang, and S. Wang. 2018. Repairable cascaded slide-lock system endows bird feathers with tear-resistance and superdurability. Proceedings of the National Academy of Sciences of the United States of America 115:201808293.

How to Cite

Laurent, C. ., Wang, X. ., Wang, B. ., & Li, Z. . (2022). Exceptional Preservation of Feather Micro-Structures in Amber from the Middle-Cretaceous of Myanmar. Biosis: Biological Systems, 2(4), 423–439.





Article Details

Most Read This Month


Copyright (c) 2021 Biosis: Biological Systems

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.