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ABSTRACT 

A new species of spiroplasmid, Spiroplasma burmanica sp. nov. 
(Mollicutes: Entomoplasmatales: Spiroplasmataceae) is described from the 

body cavity of a fossil plant louse (Psylloidea: Sternorrhyncha) in 

Burmese amber.  The new species is pleomorphic with body shapes 

varying from oval to helical.  The majority of the helical cells occur in the 

head, thorax (including leg cavities) and abdomen of the fossil psyllid.   

The association between S. burmanica and the psyllid is considered to be a 

case of symbiosis, similar to extant relationships.  This discovery of the 

first fossil spiroplasmid shows that psyllids carried these microorganisms 

some 100 million years ago. 

ARTICLE HISTORY 

Received 15 November 2020 

Revised 11 December 2020 

Accepted 12 December 2020 

 

KEYWORDS 

Spiroplasmataceae 

Mollicutes 

Fossil 

Psyllid 

Burmese amber  

 

 

Introduction 

Insects have associations with many different 

microorganisms. These associations can be 

mutually beneficial and asymptomatic 

(symbiotic), parasitic or pathogenic. Most insect 

symbiotes are specific, occur in a single or 

related host, and are vertically transmitted 

(Bressan, 2014). 

Members of the family Spiroplasmataceae are 

enigmatic, parasitic microorganisms 

characterized by the absence of cell walls, 
flagella, and other organelles of locomotion. 

They possess a wide range of cell shapes (from 

spherical to helical) and are found in both insects 

and plants. Spiroplasmas in herbivorous insects 

may be vectored to and established in the 

insect’s host plant (Fletcher et al., 2006; 

Gasparich 2010). Spiroplasmas also may cause 

various structural malformations in insects 

(Williamson et al., 1999). The present study 

describes a spiroplasmid in the body cavity of a 

fossil psyllid (Psylloidea: Sternorrhyncha) in 

Burmese amber, showing that the family 

Spiroplastmataceae extends back at least to the 

mid-Cretaceous.   

Materials and methods 

The amber specimen originated from the Noije 

Bum Summit Site mine in the Hukawng Valley, 

located southwest of Maingkhwan in Kachin 

State (26º20´N, 96º36´E) in northern Myanmar. 

Based on paleontological evidence the site was 

dated to the late Albian of the Early Cretaceous 
(Cruickshank & Ko 2003), placing the age at 97–

110 Mya. A recent Zircon U-Pb and trace 

element analyses of amber from different 

locations in Myanmar confirmed an age of 

around 100 Ma for amber from the Hukawng 

Valley as well as an age range of 72 Ma to 110 

Ma for amber from other sites in northern 

Myanmar (Xing & Qui, 2020).  
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The amber was polished close enough to the 

insect’s abdomen to observe the spiroplasmas 

under oil immersion with a Nikon Optiphot 

compound microscope. Helicon Focus Pro X64 

was used to stack photos for better overall clarity 
and depth of field.  Images of microorganisms in 

amber are difficult to photograph since photos 

must be taken through the amber matrix as well 

as through the insect body wall, which explains 

why the resulting images can never be as clear as 

with extant forms.  

Results 

A wide range of cell shapes (from spherical to 

helical) were observed in the body cavity of the 

fossil psyllid. Tightly appressed cells of various 

shapes (from spherical to short helical) occurred 

in several extracellular locations in the 
abdominal hemocoel (Figs.1,2). The remainder 

of the abdomen, as well as the thorax, head and 

leg segments of the fossil psyllid were filled with 

helical cells in various positions, indicating that 

they were in motion when preserved. 

Placement of the microbes in the genus 

Spiroplasma, which is the only genus in the 

family Spiroplasmataceae, is based on the helical 

(spiral) shape of the great majority of cells and 

the absence of cell walls, flagella, and other 

organelles of locomotion (Whitcomb & 
Tully,1982, 1984). It was not possible to confirm 

the presence of spiroplasmas in the alimentary 

tract since it was opaque. 

Phylum: Firmicutes Gibbons and Murray 1978 

Division: Tenericutes Rasin & Freundt 1984 

Class: Mollicutes Edward & Freundt 1967 

Order: Entomoplasmatales Tully et al. 1893 

Family: Spiroplasmataceae Skripal 1983  

Genus: Spiroplasma Skripal 1974 

 

Spiroplasma burmanica sp. nov. (Figs.1-7) 

This taxon is established for spiroplasmas in the 
body cavity of fossil plant lice (Hemiptera: 

Sternorrhyncha: Psylloidea) in Burmese amber. 

Diagnosis: Species pleomorphic, with both 

spherical and helical cells lacking cell walls, 

flagella, and other organelles of locomotion. 

Helical cells occur in the hemocoel of the 

abdomen, thorax, head, and legs. Spherical cells 

occur in clusters in the abdominal cavity. 

 

Description: Species polymorphic, lacking cell 

walls; with clusters of spherical cells, ranging 

from 0.06 to 0.10 µm in diameter, in the 

abdomen.  Helical cells, presumed to be motile 

based on their various shapes, ranging from 0.3 
to 0.5 µm in length and from .03 to .05 µm in 

diameter, occurring in the abdomen, thorax, head 

and leg segments.  Genetic and growth features 

unobtainable. 

 

Specimen. Deposited in the Poinar amber 

collection (accession # B-He- 4-37) maintained 

at Oregon State University. 

 

Type locality: Myanmar (Burma), state of 

Kachin, Noije Bum Summit Site amber mine in 

the Hukawng Valley, SW of Maingkhwan 
(26º20´N, 96º36´E). 

 

Etymology: The specific epithet indicates the 

geographical origin of the fossil. 

Host insect: Alloeopterus anomeotarsus 

(Hemiptera: Sternorrhyncha: Psylloidea: 

Dinglidae). 

 

Figure 1. Dorsal view of Alloeopterus 

anomeotarsus gen. et sp. nov. in Burmese amber. 

Scale bar = 400 µm. 
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Figure 2. Dorsal view of abdomen of 

Alloeopterus anomeotarsus in Burmese amber. 

A= alimentary tract. Arrow shows location of 

spherical and short-helical stages of Spiroplasma 

burmanica sp. nov. shown in Fig. 3. Lower 

Arrowhead shows area of helical stages of S. 

burmanica sp. nov. shown in Fig. 4. Top 

arrowhead shows area of helical stages show in 

Fig. 5. Scale bar = 160 µm.  

 
Figure 3. Spherical and short-helical cells of 

Spiroplasma burmanica sp. nov. in the 

abdominal hemocoel of Alloeopterus 

anomeotarsus in Burmese amber. Scale bar = 0.7 

µm.  Insert. Detail of same area. Scale bar = 0.3 

µm. 

 
Figure 4. A. Helical cells of Spiroplasma 

burmanica sp. nov. in the hemocoel of the 

abdomen of Alloeopterus anomeotarsus in 

Burmese amber.  Scale bar = 0.4 µm.  B. Same 

as 4A except under different optical conditions.  

Scale bar = 0.2 µm. 

 
Figure 5. Clusters of helical cells (arrows) of 

Spiroplasma burmanica sp. nov. along the edge 
of the abdominal cavity of Alloeopterus 

anomeotarsus in Burmese amber.  Scale bar = 

0.7 µm.  Insert. Detail of helical cells in same 

area. Scale bar = 0.2 µm. 
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Figure 6. Helical cells of Spiroplasma 

burmanica sp. nov. in the lumen of the 

mesofemur of Alloeopterus anomeotarsus in 

Burmese amber. Scale bar = 1.5 µm. Insert. 

Detail of helical cells in same area. Scale bar = 

0.4 µm. 

 
Figure 7. Helical cells of Spiroplasma 

burmanica sp. nov. in the abdominal cavity of 

Alloeopterus anomeotarsus in Burmese amber. 

A. Enlarged view of several helical cells. Scale 

bar = 0.02 µm. B. Same photo as A but with 

select cells blackened. Scale same as in A.  

Discussion  

Spiroplasma burmanica sp. nov. can be 

separated from many other insect 

microorganisms by the presence of its minute 
helical cells.  This feature distinguishes it from 

the spherical to short, straight to slightly curved, 

rod-shaped mycetocytes found in extracellular, 

spherical mycetomes of extant psyllids (Profft, 

1936; Chang & Musgrave,1969 or 64). 

Another widespread group of microorganisms 

found in a wide range of invertebrates, including 

psyllids (Nakabachi et al., 2020), are rickettsia 

(Weiss & Moulder, 1984). Due to their medical 

importance, the rickettsias of blood-sucking 

insects, especially those of tsetse flies, have been 

most studied. Tsetse rickettsia, as well as those 

of psyllids (Nakabachi et al., 2020), are straight 

rods approximately 1.90 µm in length and 0.56 

µm in width (Pinnock & Hess, 1974; Dale & 

Maudin, 1999).  Their intracellular location and 
shape distinguish them from the ovoid and 

helical cells of Spiroplasma burmanica sp. nov. 

(Roubaud,1919; Wigglesworth, 1929). While the 

coccoid cells of Spiroplasma burmanica sp. nov. 

superficially resemble those of the bacterial 

genera Staphylococcus Rosenbach and 

Micrococcus Cohn that are parasites of 

numerous insects (Poinar & Thomas, 1984), the 

presence of cell walls and the chain-like growth 

pattern of the cells in the latter two genera 

distinguish them from the spherical cells of 

Spiroplasma burmanica sp. nov. 
 

The small size, absence of cell walls and flagella 

and helical cells distinguishes Spiroplasma 

burmanica sp. nov. from the much larger, rod-

shaped insect pathogenic bacteria, such as the 

ubiquitous Pseudomonas aeruginosa (Schroeter) 

and Serratia marcescens Bizio (Poinar & 

Thomas, 1984).  

The helical cells of Spiroplasma burmanica sp. 

nov. exhibit a similar shape to some protozoan 

flagellates that occur in the body cavity of 
arthropods, especially blood-suckering insects. 

However, trypanosomatids are normally 

restricted to the gut and salivary glands of 

arthropods, possess flagella, undulating 

membranes and are much larger (over 5 µm in 

length) than the helical cells of Spiroplasma 

burmanica sp. nov. (Marinkelle, 1982; Schaub, 

1994; Wallace, 1966; Kudo, 1966). 

The polymorphic feature of spiroplasmas, with 

cell shapes ranging from spherical to helical 

(Fig. 3) is shared with mycoplasmas (Razin & 

Freundt, 1984; Whitcomb & Tully, 1982, 1984).  
Both groups have cells that are spherical, pear 

shaped, filamentous or helical.  However, the 

cells of mycoplasmas are usually not motile or at 

most have a gliding movement and are parasites 

of birds and mammals (Razin & Freundt, 1984; 

Meloni et al., 1980). 

It is not possible to determine the plant host of 

the fossil psyllid, since the host range of extant 

psyllids includes at least 45 plant families 

(Hodkinson, 2009). However, psyllids mainly 

feed on perennial dicotyledonous angiosperms 
and are usually host specific (Hodkinson, 2009).  

Their restriction to a single (or closely related) 
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host plant makes psyllids excellent vectors of 

plant parasitic microorganisms. In Africa and 

Asia, psyllids vector phloem-limited bacteria 

such as Candidatus Liberibacter africanum and 

Candidatus L. asiaticum (Rhizobiaceae) that 
cause “citrus greening”, a disease resulting in the 

dieback of shoots and leaves and the 

deterioration of fruit quality (Gullan & Martin, 

2003; Nadarasah & Stavrinides, 2011). The 

minute rod-shaped bacteria of Candidatus range 

from 0.2-0.4 µm in length (Puttamuk et al., 

2014). No helical cells are associated with 

cultures of Candidatus (Nadarasah & 

Stavrinides, 2011). 

There are no known examples of psyllids 

vectoring spiroplasmas to their host plants and it 

is very likely that S. burmanica has a symbiotic 
association with the psyllid, involving either 

commensalism (one organ benefits and the other 

organism is not harmed), mutualism (both 

organisms benefit, and neither is harmed) and is 

carried transovarially from one generation to the 

next. A symbiotic association is strengthened by 

the discovery of helical cells of Spiroplasma 

burmanica in the body cavity of another 

Burmese amber psylloid, Mirala burmanica 

Burckhardt & Poinar (2020). The present study 

extends the distribution of the family 
Spiroplastmataceae back at least to the mid-

Cretaceous and shows psyllida as being early 

hosts of this association. 
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